Issue Date
1998-01-01Keywords
Southern AfricaTh U
diagenesis
Tertiary
calcrete
cementation
genesis
Khorixas Namibia
Namibia
thermoluminescence
wind transport
Africa
Cenozoic
C 14
carbon
dates
isotopes
radioactive isotopes
absolute age
sedimentary rocks
carbonate rocks
Metadata
Show full item recordCitation
Geyh, M. A., & Eitel, B. (1998). Radiometric dating of young and old calcrete. Radiocarbon, 40(2), 795-802.Journal
RadiocarbonDescription
From the 16th International Radiocarbon Conference held in Gronigen, Netherlands, June 16-20, 1997.Additional Links
http://radiocarbon.webhost.uits.arizona.edu/Abstract
To obtain a better understanding of the relationship between calcrete genesis and the results of different absolute dating methods, thermoluminescence (TL), radiocarbon (14C) and uranium/thorium (U/Th) were applied to coeval samples taken from a very young calcrete profile in Namibia. The methodically different ages reflect the characteristics of the applied dating methods, the genetics of calcrete and different events of calcrete genesis. The conventional 14C ages and the TL dates cover the last 50 ka, while the corresponding U/Th dates of coeval samples are many times larger. Uranium-series dates are not related to the deposition of the host material or to its cementation if the ages are smaller than ca. 120 ka. The TL clock is set to zero during eolian transport and the corresponding radiometric ages of the quartz and feldspar grains date the time of their deposition. The 14C ages of the cement correspond, on the other hand, to a time shortly after the onset of the cementation and long before its termination. In the case of very old calcrete, the mixture of young and old cement results in ambiguous ages if they cannot be confirmed by an independent technique.Type
Proceedingstext
Language
enISSN
0033-8222ae974a485f413a2113503eed53cd6c53
10.1017/S0033822200018749