Radiocarbon Dating of Iron Artifacts at the Erlangen AMS Facility
Author
Scharf, AndreasKretschmer, Wolfgang
Morgenroth, Gerhard
Uhl, Thomas
Kritzler, Karin
Hunger, Katja
Pernicka, Ernst
Issue Date
2004-01-01
Metadata
Show full item recordCitation
Scharf, A., Kretschmer, W., Morgenroth, G., Uhl, T., Kritzler, K., Hunger, K., & Pernicka, E. (2004). Radiocarbon dating of iron artifacts at the Erlangen AMS facility. Radiocarbon, 46(1), 175-180.Journal
RadiocarbonDescription
From the 18th International Radiocarbon Conference held in Wellington, New Zealand, September 1-5, 2003.Additional Links
http://radiocarbon.webhost.uits.arizona.edu/Abstract
One problem in preparing iron for radiocarbon dating is the low carbon content which makes the sample size needed too large for some sample combustion systems. Also, the metallic character of the samples complicates sample combustion or oxidation. The Erlangen accelerator mass spectrometry group uses an elemental analyzer for the sample combustion, directly followed by a reduction facility. As the carbon content and sample size for iron samples are unsuitable for combustion in an elemental analyzer, 2 alternative approaches are to (a) avoid oxidation and reduction, or (b) extract the carbon from the iron, prior to combustion. Therefore, 2 different pathways were explored. One is direct sputtering of the unprocessed iron sample in the ion source. The other is the complete chemical extraction of carbon from the iron sample and dating of the carbonaceous residue. Also, different methods for cleaning samples and removing contamination were tested. In Erlangen, a Soxhlet extraction is employed for this purpose. Also, the sampling of the iron sample by drilling or cutting can be a source of contamination. Thus, the measurement of iron drill shavings yielded ages that were far too high. The first results for iron samples of known age from 2 archaeological sites in Germany are presented and discussed.Type
Proceedingstext
Language
enISSN
0033-8222ae974a485f413a2113503eed53cd6c53
10.1017/S0033822200039497