The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body
Citation
Rubin, A. E., Zolensky, M. E., & Bodnar, R. J. (2002). The halite‐bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H‐chondrite parent body. Meteoritics & Planetary Science, 37(1), 125-141.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
Zag and Monahans (1998) are H-chondrite regolith breccias comprised mainly of light-colored metamorphosed clasts, dark clasts that exhibit extensive silicate darkening, and a halite-bearing clastic matrix. These meteorites reflect a complex set of modification processes that occurred on the H-chondrite parent body. The light-colored clasts are thermally metamorphosed H5 and H6 rocks that were fragmented and deposited in the regolith. The dark clasts formed from light-colored clasts during shock events that melted and mobilized a significant fraction of their metallic Fe-Ni and troilite grains. The clastic matrices of these meteorites are rich in solar-wind gases. Parent-body water was required to cause leaching of chondritic minerals and chondrule glass; the fluids became enriched in Na, K, Cl, Br, Al, Ca, Mg and Fe. Evaporation of the fluids caused them to become brines as halides and alkalies became supersaturated; grains of halite (and, in the case of Monahans (1998), halite with sylvite inclusions) precipitated at low temperatures (less than or equal to 100 degrees C) in the porous regolith. In both meteorites fluid inclusions were trapped inside the halite crystals. Primary fluid inclusions were trapped in the growing crystals; secondary inclusions formed subsequently from fluid trapped within healed fractures.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2002.tb00799.x