• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 37 (2002)
    • Meteoritics & Planetary Science, Volume 37, Number 3 (2002)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 37 (2002)
    • Meteoritics & Planetary Science, Volume 37, Number 3 (2002)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14571-16906-1-PB.pdf
    Size:
    1.866Mb
    Format:
    PDF
    Download
    Author
    Mostefaoui, Smail
    Kita, Noriko T.
    Togashi, Shigeko
    Tachibana, Shogo
    Nagahara, Hiroko
    Morishita, Yuichi
    Issue Date
    2002-01-01
    Keywords
    Isotopic ratios
    solar system
    Interstellar molecular cloud
    graphite
    
    Metadata
    Show full item record
    Citation
    Mostefaoui, S., Kita, N. T., Togashi, S., Tachibana, S., Nagahara, H., & Morishita, Y. (2002). The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum‐26/aluminum‐27 ratios. Meteoritics & Planetary Science, 37(3), 421-438.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655488
    DOI
    10.1111/j.1945-5100.2002.tb00825.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We performed a systematic high precision SIMS 26Al-26Mg isotopic study for 11 ferromagnesian chondrules from the highly unequilibrated ordinary chondrite Bishunpur (LL3.1). The chondrules are porphyritic and contain various amounts of olivine and pyroxene and interstitial plagioclase and/or glass. The chemical compositions of the chondrules vary from FeO-poor to FeO-rich. Eight chondrules show resolvable 26Mg-excesses with a maximum delta-26Mg of ~1% in two chondrules. The initial 26Al/27Al ratios inferred for these chondrules range between (2.28 +/- 0.73) x 10^(-5) to (0.45 +/- 0.21) x 10^(-5). Assuming a homogeneous distribution of Al isotopes in the early solar system, this range corresponds to ages relative to CAIs between 0.7 +/- 0.2 My and 2.4^(-0.4/+0.7) My. The inferred total span of the chondrule formation ages is at least 1 My, which is too long to form chondrules by the X-wind. The initial 26Al/27Al ratios of the chondrules are found to correlate with the proportion of olivine to pyroxene suggesting that olivine-rich chondrules formed earlier than pyroxene-rich chondrules. Though we do not have a completely satisfactory explanation of this correlation we tentatively interpret it as a result of evaporative loss of Si from earlier generations of chondrules followed by addition of Si to the precursors of later generation chondrules.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2002.tb00825.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 37, Number 3 (2002)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.