• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 37 (2002)
    • Meteoritics & Planetary Science, Volume 37, Number 4 (2002)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 37 (2002)
    • Meteoritics & Planetary Science, Volume 37, Number 4 (2002)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A hibonite-corundum inclusion from Murchison: A first-generation condensate from the solar nebula

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14584-16919-1-PB.pdf
    Size:
    1.367Mb
    Format:
    PDF
    Download
    Author
    Simon, S. B.
    Davis, A. M.
    Grossman, L.
    McKeegan, K. D.
    Issue Date
    2002-01-01
    Keywords
    cosmogenic isotopes
    strewn field
    olivine
    Falls
    L chondrites
    
    Metadata
    Show full item record
    Citation
    Simon, S. B., Davis, A. M., Grossman, L., & McKeegan, K. D. (2002). A hibonite‐corundum inclusion from Murchison: A first‐generation condensate from the solar nebula. Meteoritics & Planetary Science, 37(4), 533-548.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655501
    DOI
    10.1111/j.1945-5100.2002.tb00837.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Through freeze-thaw disaggregation of the Murchison (CM) carbonaceous chondrite, we have recovered a ~90 x 75 micrometers refractory inclusion that consists of corundum and hibonite with minor perovskite. Corundum occurs as small (~10 micrometers), rounded grains enclosed in hibonite laths (~10 micrometers wide and 30-40 micrometers long) throughout the inclusion. Perovskite predominantly occurs near the edge of the inclusion. The crystallization sequence inferred petrographically--corundum followed by hibonite followed by perovskite--is that predicted for the first phases to form by equilibrium condensation from a solar gas for Ptot is less than or equal to 5 x 10^(-3) atm. In addition, the texture of the inclusion, with angular voids between subhedral hibonite laths and plates, is also consistent with formation of the inclusion by condensation. Hibonite has heavy rare earth element (REE) abundances of ~40 x CI chondrites, light REE abundances ~20 x CI chondrites, and negative Eu anomalies. The chondrite-normalized abundance patterns, especially one for a hibonite-perovskite spot, are quite similar to the patterns of calculated solid/gas partition coefficients for hibonite and perovskite at 10^(-3) atm and are not consistent with formation of the inclusion by closed-system fractional crystallization. In contrast with the features that are consistent with a condensation origin, there are problems with any model for the formation of this inclusion that includes a molten stage, relic grains, or volatilization. If thermodynamic models of equilibrium condensation are correct, then this inclusion formed at pressures <5 x 10^(-3) atm, possibly with enrichments (<1000x) in CI dust relative to gas at low pressures (below 10^(-4) atm). Both hibonite and corundum have delta-17O is approximately equal to delta-18O which is approximately equal to -50 ppm, indicating formation from an 16O-rich source. The inclusion does not contain radiogenic 26Mg and apparently did not contain live 26Al when it formed. If the short-lived radionuclides were formed in a supernova and injected into the early solar nebula, models of this process suggest that 26Al-free refractory inclusions such as this one formed within the first ~6 x 10^5 years of nebular collapse.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2002.tb00837.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 37, Number 4 (2002)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.