Show simple item record

dc.contributor.authorOsawa, T.
dc.contributor.authorNagao, K.
dc.date.accessioned2021-02-12T20:55:39Z
dc.date.available2021-02-12T20:55:39Z
dc.date.issued2002-01-01
dc.identifier.citationOsawa, T., & Nagao, K. (2002). Noble gas compositions of Antarctic micrometeorites collected at the Dome Fuji Station in 1996 and 1997. Meteoritics & Planetary Science, 37(7), 911-936.
dc.identifier.issn1945-5100
dc.identifier.doi10.1111/j.1945-5100.2002.tb00867.x
dc.identifier.urihttp://hdl.handle.net/10150/655540
dc.description.abstractThe noble gases He, Ne, Ar, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) i the size range 60 to 250 micrometers that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd-YAG continuous wave laser with an output power of 2.5-3.5 W for ~5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85-9.65) x 10^(-4)). Solar energetic panels (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic higher composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic-ray exposure ages (>100 Ma), calculated by assuming solar cosmic-ray (SCR) + galactic cosmic-ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9-289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q-Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q-Ar, suggesting the presence of SEP-Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air-affected (nine particles), and solar-affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (~1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas composition, and carbonaceous chondrite-like objects are appropriate candidate sources for most AMMs.
dc.language.isoen
dc.publisherThe Meteoritical Society
dc.relation.urlhttps://meteoritical.org/
dc.rightsCopyright © The Meteoritical Society
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectcarbonaceous chondrites
dc.subjectthermal metamorphism
dc.titleNoble gas compositions of Antarctic micrometeorites collected at the Dome Fuji Station in 1996 and 1997
dc.typeArticle
dc.typetext
dc.identifier.journalMeteoritics & Planetary Science
dc.description.collectioninformationThe Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information.
dc.eprint.versionFinal published version
dc.description.admin-noteMigrated from OJS platform February 2021
dc.source.volume37
dc.source.issue7
dc.source.beginpage911
dc.source.endpage936
refterms.dateFOA2021-02-12T20:55:39Z


Files in this item

Thumbnail
Name:
14625-16960-1-PB.pdf
Size:
1.795Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record