• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 37 (2002)
    • Meteoritics & Planetary Science, Volume 37, Number 12 (2002)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 37 (2002)
    • Meteoritics & Planetary Science, Volume 37, Number 12 (2002)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14696-17033-1-PB.pdf
    Size:
    1.452Mb
    Format:
    PDF
    Download
    Author
    Stöffler, D.
    Artemieva, N. A.
    Pierazzo, E.
    Issue Date
    2002-01-01
    Keywords
    suevite
    petrographic
    geochemical
    Steinheim crater
    Ries crater
    moldavite strewn field
    
    Metadata
    Show full item record
    Citation
    Stöffler, D., Artemieva, N. A., & Pierazzo, E. (2002). Modeling the Ries‐Steinheim impact event and the formation of the moldavite strewn field. Meteoritics & Planetary Science, 37(12), 1893-1907.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655611
    DOI
    10.1111/j.1945-5100.2002.tb01171.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Using detailed geological, petrographic, geochemical, and geographical constraints we have performed numerical modeling studies that relate the Steinheim crater (apparent diameter Da = 3.8 km), the Ries crater (Da = 24 km) in southern Germany, and the moldavite (tektite) strewn field in Bohemia and Moravia (Czech Republic), Lusatia (East Germany), and Lower Austria. The moldavite strewn field extends from ~200 to 450 km from the center of the Ries to the east-northeast forming a fan with an angle of ~57 degrees. An oblique impact of a binary asteroid from a west-southwest direction appears to explain the locations of the craters and the formation and distribution of the moldavites. The impactor must have been a binary asteroid with two widely separated components (some 1.5 and 0.15 km in diameter, respectively). We carried out a series of three-dimensional hydrocode simulations of a Ries-type impact. The results confirm previous results suggesting that impacts around 30-50 degrees (from the horizontal) are the most favorable angles for near-surface melting, and, consequently for the formation of tektites. Finally, modeling of the motion of impact-produced tektite particles through the atmosphere produces, in the downrange direction, a narrow-angle distribution of the moldavites tektites in a fan like field with an angle of ~75 degrees. An additional result of modeling the motion of melt inside and outside the crater is the preferred flow of melt from the main melt zone of the crystalline basement downrange towards the east-northeast rim. This explains perfectly the occurrence of coherent impact melt bodies (some tens of meters in size) in a restricted zone of the downrange rim of the Ries crater. The origin of these melt bodies, which represent chemically a mixture of crystalline basement rocks similar to the main melt mass contained (as melt particles < 0.5 m in size) in the suevite, do not occur at any other portion of the Ries crater rim and remained enigmatic until now. Although the calculated distribution of moldavites still deviates to some degree from the known distribution, our results represent an important step toward a better understanding of the origin and distribution of the high-velocity surface melts and the low-velocity, deep-seated melt resulting from an oblique impact on a stratified target.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2002.tb01171.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 37, Number 12 (2002)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.