• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 2 (2003)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 2 (2003)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An experimental test of Henry's Law in solid metal-liquid metal systems with implications for iron meteorites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14766-17102-2-PB.pdf
    Size:
    7.739Mb
    Format:
    PDF
    Download
    Author
    Chabot, N. L.
    Campbell, A. J.
    Jones, J. H.
    Humayun, M.
    Agee, C. B.
    Issue Date
    2003-01-01
    Keywords
    Henry's Law
    trace elements
    asteroids
    magmatic iron meteorites
    
    Metadata
    Show full item record
    Citation
    Chabot, N. L., Campbell, A. J., Jones, J. H., Humayun, M., & Agee, C. B. (2003). An experimental test of Henry's Law in solid metal‐liquid metal systems with implications for iron meteorites. Meteoritics & Planetary Science, 38(2), 181-196.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655653
    DOI
    10.1111/j.1945-5100.2003.tb00259.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Experimental solid metal-liquid metal partition coefficients have been used to model the crystallization of magmatic iron meteorites and understand the evolution of asteroid cores. However, the majority of the partitioning experiments have been conducted with trace elements doped at levels that are orders of magnitude higher than measured in iron meteorites. Concern about Henrys Law and the unnatural doping levels have been cited as one reason that two recent iron meteorite studies have dismissed the experimental partition coefficients in their modeling. Using laser ablation ICP-MS analysis, this study reports experimentally determined solid metal-liquid metal trace element partition coefficients from runs doped down to the levels occurring in iron meteorites. The analyses for 12 trace elements (As, Co, Cr, Cu, Ga, Ge, Ir, Os, Pd, Pt, Re, and W) show no deviations from Henrys Law, and these results support decades of experimental work in which the partition coefficients were assumed to be independent of trace element concentration. Further, since our experiments are doped with natural levels of trace elements, the partitioning results are directly applicable to iron meteorites and should be used when modeling their crystallization. In contrast, our new Ag data are inconsistent with previous studies, suggesting the high Ag-content in previous studies may have influenced the measured Ag partitioning behavior.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2003.tb00259.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 38, Number 2 (2003)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.