• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 4 (2003)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 4 (2003)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14792-17128-1-PB.pdf
    Size:
    703.8Kb
    Format:
    PDF
    Download
    Author
    Elkins-Tanton, L. T.
    Chatterjee, N.
    Grove, T. L.
    Issue Date
    2003-01-01
    Keywords
    Picritic glasses
    Lunar petrogenesis
    Lunar differentiation
    
    Metadata
    Show full item record
    Citation
    Elkins-Tanton, L. T., Chatterjee, N., & Grove, T. L. (2003). Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteoritics & Planetary Science, 38(4), 515-527.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655679
    DOI
    10.1111/j.1945-5100.2003.tb00024.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 degrees C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 degrees C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A-B-C glass trends could not have been formed by fractionalcrystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data set), ascended to the lunar surface, and erupted as a fire fountain. A barometer created from multiple saturation points provides a depth estimate of other glasses in the A-B-C trend and of the depths of assimilation. This barometer demonstrates that the Apollo 15 A-B-C trend originated over a depth range of ~460 km to ~260 km within the moon.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2003.tb00024.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 38, Number 4 (2003)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.