• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 8 (2003)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 8 (2003)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Iron oxidation state in the Fe-rich layer and silica matrix of Libyan Desert Glass: A high-resolution XANES study

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14850-17186-1-PB.pdf
    Size:
    1012.Kb
    Format:
    PDF
    Download
    Author
    Giuli, G.
    Paris, E.
    Pratesi, G.
    Koeberl, C.
    Cipriani, C.
    Issue Date
    2003-01-01
    Keywords
    Chicxulub Impact crater
    impact glasses
    K/T boundary
    Xanes
    
    Metadata
    Show full item record
    Citation
    Giuli, G., Paris, E., Pratesi, G., Koeberl, C., & Cipriani, C. (2003). Iron oxidation state in the Fe‐rich layer and silica matrix of Libyan Desert Glass: A high‐resolution XANES study. Meteoritics & Planetary Science, 38(8), 1181-1186.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655733
    DOI
    10.1111/j.1945-5100.2003.tb00306.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Libyan Desert Glass (LDG) is an enigmatic type of glass that occurs in western Egypt in the Libyan Desert. Fairly convincing evidence exists to show that it formed by impact, although the source crater is currently unknown. Some rare samples present dark-colored streaks with variable amounts of Fe, and they are supposed to contain a meteoritic component. We have studied the iron local environment in an LDG sample by means of Fe K-edge high- resolution X-ray absorption near edge structure (XANES) spectroscopy to obtain quantitative data on the Fe oxidation state and coordination number in both the Fe-poor matrix and Fe-rich layers. The pre-edge peak of the high-resolution XANES spectra of the sample studied displays small but reproducible variations between Fe-poor matrix and Fe-rich layers, which is indicative of significant changes in the Fe oxidation state and coordination number. Comparison with previously obtained data for a very low-Fe sample shows that, while iron is virtually all trivalent and in tetrahedral coordination ([4]Fe3+) in the low-Fe sample, the sample containing the Fe-rich layers display a mixture of tetra-coordinated trivalent iron ([4]Fe3+) and penta-coordinated divalent iron ([5]Fe2+), with the Fe in the Fe-rich layer being more reduced than the matrix. From these data, we conclude the following: a) the significant differences in the Fe oxidation state between LDG and tektites, together with the wide intra-sample variations in the Fe-oxidation state, confirm that LDG is an impact glass and not a tektite-like glass; b) the higher Fe content, coupled with the more reduced state of the Fe, in the Fe-rich layers suggests that some or most of the Fe in these layers may be directly derived from the meteoritic projectile and that it is not of terrestrial origin.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2003.tb00306.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 38, Number 8 (2003)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.