• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 10 (2003)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 10 (2003)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The parameterization of solid metal-liquid metal partitioning of siderophile elements

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14869-17205-1-PB.pdf
    Size:
    2.576Mb
    Format:
    PDF
    Download
    Author
    Chabot, N. L.
    Jones, J. H.
    Issue Date
    2003-01-01
    Keywords
    Henry's Law
    trace elements
    asteroids
    magmatic iron meteorites
    
    Metadata
    Show full item record
    Citation
    Chabot, N. L., & Jones, J. H. (2003). The parameterization of solid metal‐liquid metal partitioning of siderophile elements. Meteoritics & Planetary Science, 38(10), 1425-1436.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655751
    DOI
    10.1111/j.1945-5100.2003.tb00248.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Many solar system processes involve a metallic liquid, and the composition of the metallic liquid, such as the liquid's concentrations of S, P, and degrees C, will influence the partitioning of elements during such processes. We present a method for parameterizing solid metal-liquid metal partition coefficients for siderophile (metal-loving) elements as a function of the metallic liquid composition. Our parameterization method is based on an older theory of Jones and Malvin (1990), which stated that the metallic liquid is composed of metal and non-metal-bearing domains, and the domains are the dominant influence on the partitioning behavior. By revising the means by which the metal domains are calculated, our revised parameterization method is able to match experimental partitioning data from the Fe-Ni-S, Fe-Ni-P, Fe-Ni-S-P, and Fe-Ni-C systems. Mathematical expressions were derived for the solid metal-liquid metal partitioning of 13 siderophile elements. Elements that are chalcophile (S-loving), P-loving, or C-loving prefer the non-metal-bearing domains in the metallic liquid and, consequently, aren't fit by the parameterization method presented here. Possible applications for our parameterization method include modeling the crystallization of iron meteorites, planetary differentiation, and the solidification of Earth's inner core.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2003.tb00248.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 38, Number 10 (2003)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.