• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 12 (2003)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 38 (2003)
    • Meteoritics & Planetary Science, Volume 38, Number 12 (2003)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14896-17232-1-PB.pdf
    Size:
    5.804Mb
    Format:
    PDF
    Download
    Author
    Kring, D. A.
    Gleason, J. D.
    Swindle, T. D.
    Nishiizumi, K.
    Caffee, M. W.
    Hill, D. H.
    Jull, A. J. T.
    Boynton, W. V.
    Issue Date
    2003-01-01
    Keywords
    Mars
    volcanic Melt
    QUE 94201
    Volcanism
    
    Metadata
    Show full item record
    Citation
    Kring, D. A., Gleason, J. D., Swindle, T. D., Nishiizumi, K., Caffee, M. W., Hill, D. H., ... & Boynton, W. V. (2003). Composition of the first bulk melt sample from a volcanic region of Mars: Queen Alexandra Range 94201. Meteoritics & Planetary Science, 38(12), 1833-1848.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655778
    DOI
    10.1111/j.1945-5100.2003.tb00018.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Antarctic meteorite Queen Alexandra Range (QUE) 94201 is a 12 g basaltic achondrite dominated by plagioclase (now maskelynite) and zoned low- and high-Ca pyroxene. Petrologic, geochemical, and isotopic analyses indicate that it is related to previously described basaltic and lherzolitic shergottites, which are a group of igneous meteorites that are believed to be from Mars. Unlike previous shergottites, however, QUE 94201 represents a bulk melt rather than a cumulate fraction, meaning it can be used to infer magmatic source regions and the compositions of other melts on Mars. This melt has much more Fe and P than basaltic melts produced on Earth and formed at a much lower oxygen fugacity. This has altered the crystallization sequence of the melt, removing olivine from the liquidus to produce a plagioclase and 2-pyroxene assemblage. If the high-phosphorus and low-oxygen fugacity conditions represented by QUE 94201 are common in magmatic regions of Mars, then olivine may be rare in martian basalts. No solar cosmic ray effects were seen in the concentrations of 10Be, 26Al, and 36Cl with depth in the meteorite, implying at least 3 cm of ablation during entry to Earth. Significant excesses of neutron capture noble gas isotopes (80, 82Kr and 128, 131Xe) suggest that the QUE 94201 sample came from a depth 22 cm in a meteoroid of at least that radius. The meteorite also has very low 21Ne/22Ne, which would often be interpreted to mean little ablation (contradicting above evidence) but, in this case, appears to reflect a very low abundance of Mg (the principal target element for Ne) in the meteorite, consistent with our bulk chemical analyses. The meteorite has a terrestrial 36Cl age of 0.29 +/- 0.05 Myr and a 10Be exposure age of 2.6 +/- 0.5 Myr in a 4-pi geometry, implying an ejection age of 2.9 +/- 0.5 Myr.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2003.tb00018.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 38, Number 12 (2003)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.