Show simple item record

dc.contributor.authorDence, M. R.
dc.date.accessioned2021-02-12T20:56:34Z
dc.date.available2021-02-12T20:56:34Z
dc.date.issued2004-01-01
dc.identifier.citationDence, M. R. (2004). Structural evidence from shock metamorphism in simple and complex impact craters: Linking observations to theory. Meteoritics & Planetary Science, 39(2), 267-286.
dc.identifier.issn1945-5100
dc.identifier.doi10.1111/j.1945-5100.2004.tb00340.x
dc.identifier.urihttp://hdl.handle.net/10150/655803
dc.descriptionFrom the proceedings of the Workshop on Impact Cratering: Bridging the Gap between Modeling and Observations held in February 2003 at the Lunar and Planetary Institute in Houston, Texas.
dc.description.abstractThe structure of Canadian impact craters formed in crystalline rocks is analyzed using shock metamorphism and evidence for movement along shear zones. The analysis is based on an interpretation that, beyond the near field region, shock pressure attenuates down axis as P ~ R^(-2), in agreement with nuclear test and computed results, and as P ~ R^(-3) near the surface. In both simple and complex craters, the transient cavity is defined by the limit of fragmentation due to direct and reflected shock waves. The intersection of the transient cavity with hemispheric shock isobars indicates that the transient cavity has a parabolic form. Weakening by dilation during early uplift allows late stage slumping of the walls of simple craters. This is controlled by a spheroidal primary shear of radius rs is approximately equal to 2dt, where dt is the depth of the transient crater due to excavation and initial compression. With increasing crater diameter, the size of the transient cavity decreases relative to the shock imprint, suggesting that fragmentation and excavation is limited by progressively earlier collapse of the margins under gravity. Central peak formation in complex craters may be initiated by relaxation of the shock-compressed central parautochthone, so the primary shear, lubricated by friction melting, meets below the crater floor and drives the continuing upward motion.
dc.language.isoen
dc.publisherThe Meteoritical Society
dc.relation.urlhttps://meteoritical.org/
dc.rightsCopyright © The Meteoritical Society
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectAttenuation
dc.subjectCentral peak
dc.subjectTransient crater
dc.subjectshock metamorphism
dc.titleStructural evidence from shock metamorphism in simple and complex impact craters: Linking observations to theory
dc.typeProceedings
dc.typetext
dc.identifier.journalMeteoritics & Planetary Science
dc.description.collectioninformationThe Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information.
dc.eprint.versionFinal published version
dc.description.admin-noteMigrated from OJS platform February 2021
dc.source.volume39
dc.source.issue2
dc.source.beginpage267
dc.source.endpage286
refterms.dateFOA2021-02-12T20:56:34Z


Files in this item

Thumbnail
Name:
14920-17256-1-PB.pdf
Size:
6.864Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record