• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 2 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 2 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Tectonic influences on the morphometry of the Sudbury impact structure: Implications for terrestrial cratering and modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14921-17257-1-PB.pdf
    Size:
    7.240Mb
    Format:
    PDF
    Download
    Author
    Spray, J. G.
    Butler, H. R.
    Thompson, L. M.
    Issue Date
    2004-01-01
    Keywords
    tectonics
    pseudotachylytes
    Sudbury crater
    
    Metadata
    Show full item record
    Citation
    Spray, J. G., Butler, H. R., & Thompson, L. M. (2004). Tectonic influences on the morphometry of the Sudbury impact structure: Implications for terrestrial cratering and modeling. Meteoritics & Planetary Science, 39(2), 287-301.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    Description
    From the proceedings of the Workshop on Impact Cratering: Bridging the Gap between Modeling and Observations held in February 2003 at the Lunar and Planetary Institute in Houston, Texas.
    URI
    http://hdl.handle.net/10150/655804
    DOI
    10.1111/j.1945-5100.2004.tb00341.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Impact structures developed on active terrestrial planets (Earth and Venus) are susceptible to pre-impact tectonic influences on their formation. This means that we cannot expect them to conform to ideal cratering models, which are commonly based on the response of a homogeneous target devoid of pre-existing flaws. In the case of the 1.85 Ga Sudbury impact structure of Ontario, Canada, considerable influence has been exerted on modification stage processes by late Archean to early Proterozoic basement faults. Two trends are dominant: 1) the NNW-striking Onaping Fault System, which is parallel to the 2.47 Ga Matachewan dyke swarm, and 2) the ENE-striking Murray Fault System, which acted as a major Paleoproterozoic suture zone that contributed to the development of the Huronian sedimentary basin between 2.45-2.2 Ga. Sudbury has also been affected by syn- to post-impact regional deformation and metamorphism: the 1.9-1.8 Ga Penokean orogeny, which involved NNW-directed reverse faulting, uplift, and transpression at mainly greenschist facies grade, and the 1.16-0.99 Ga Grenville orogeny, which overprinted the SE sector of the impact structure to yield a polydeformed upper amphibolite facies terrain. The pre-, syn-, and post-impact tectonics of the region have rendered the Sudbury structure a complicated feature. Careful reconstruction is required before its original morphometry can be established. This is likely to be true for many impact structures developed on active terrestrial planets. Based on extensive field work, combined with remote sensing and geophysical data, four ring systems have been identified at Sudbury. The inner three rings broadly correlate with pseudotachylyte (friction melt) -rich fault systems. The first ring has a diameter of ~90 km and defines what is interpreted to be the remains of the central uplift. The second ring delimits the collapsed transient cavity diameter at ~130 km and broadly corresponds to the original melt sheet diameter. The third ring has a diameter of ~180 km. The fourth ring defines the suggested apparent crater diameter at ~260 km. This approximates the final rim diameter, given that erosion in the North Range is 6 km and the ring faults are steeply dipping. Impact damage beyond Ring 4 may occur, but has not yet been identified in the field. One or more rings within the central uplift (Ring 1) may also exist. This form and concentric structure indicates that Sudbury is a peak ring or, more probably, a multi-ring basin. These parameters provide the foundation for modeling the formation of thisrelatively large terrestrial impact structure.
    Type
    Proceedings
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00341.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 2 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.