• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 4 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 4 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14938-17274-1-PB.pdf
    Size:
    1.431Mb
    Format:
    PDF
    Download
    Author
    Cloutis, E. A. cc
    Sunshine, J. M.
    Morris, R. V.
    Issue Date
    2004-01-01
    Keywords
    Spectral reflectance
    infrared spectroscopy
    
    Metadata
    Show full item record
    Citation
    Cloutis, E. A., Sunshine, J. M., & Morris, R. V. (2004). Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics & Planetary Science, 39(4), 545-565.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655821
    DOI
    10.1111/j.1945-5100.2004.tb00918.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Reflectance spectra of spinels and chromites have been studied as a function of composition. These two groups of minerals are spectrally distinct, which relates largely to differences in the types of major cations present. Both exhibit a number of absorption features in the 0.3-26 micrometer region that show systematic variations with composition and can be used to quantify or constrain certain compositional parameters, such as cation abundances, and site occupancies. For spinels, the best correlations exist between Fe2+ content and wavelength positions of the 0.46, 0.93, 2.8, Restrahelen, 12.3, 16.2, and 17.5 micrometer absorption features, Al and Fe3+ content with the wavelength position of the 0.93 micrometer absorption feature, and Cr content from the depth of the absorption band near 0.55 micrometers. For chromites, the best correlations exist between Cr content and wavelength positions of the 0.49, 0.59, 2, 17.5, and 23 micrometer absorption features, Fe2+ and Mg contents with the wavelength position of the 1.3 micrometer absorption feature, and Al content with the wavelength position of the 2 micrometer absorption feature. At shorter wavelengths, spinels and chromites are most readily distinguished by the wavelength position of the absorption band in the 2 m region (<2.1 micrometers for spinels, >2.1 micrometers for chromite), while at longer wavelengths, spectral differences are more pronounced. The importance of being able to derive compositional information for spinels and chromites from spectral analysis stems from the relationship between composition and petrogenetic conditions (pressure, temperature, oxygen fugacity) and the widespread presence of spinels and chromites in the inner solar system. When coupled with the ability to derive compositional information for mafic silicates from spectral analysis, this opens up the possibility of deriving petrogenetic information for remote spinel- and chromite-bearing targets from analysis of their reflectance spectra.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00918.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 4 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.