We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.
Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoil-1, Chicxulub impact crater, Mexico
Citation
Kenkmann, T., Wittmann, A., & Scherler, D. (2004). Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoil‐1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science, 39(7), 1069-1088.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
As part of the ICDP Chicxulub Scientific Drilling Project, the Yaxcopoil-1 (Yax-1) bore hole was drilled 60 km south-southwest of the center of the 180 km-diameter Chicxulub impact structure down to a depth of 1511 m. A sequence of 615 m of deformed Cretaceous carbonates and sulfates was recovered below a 100 m-thick unit of suevitic breccias and 795 m of post-impact Tertiary rocks. The Cretaceous rocks are investigated with respect to deformation features and shock metamorphism to better constrain the deformational overprint and the kinematics of the cratering process. The sequence displays variable degrees of impact-induced brittle damage and post-impact brittle deformation. The degree of tilting and faulting of the Cretaceous sequence was analyzed using 360-core scans and dip-meter log data. In accordance with lithological information, these data suggest that the sedimentary sequence represents a number of structural units that are tilted and moved with respect to each other. Three main units and nine sub-units were discriminated. Brittle deformation is most intense at the top of the sequence and at 13001400 m. Within these zones, suevitic dikes, polymict clastic dikes, and impact melt rock dikes occur and may locally act as decoupling horizons. The degree of brittle deformation depends on lithology; massive dolomites are affected by penetrative faulting, while stratified calcarenites and bituminous limestones display localized faulting. The deformation pattern is consistent with a collapse scenario of the Chicxulub transient crater cavity. It is believed that the Cretaceous sequence was originally located outside the transient crater cavity and eventually moved downward and toward the center to its present position between the peak ring and the crater rim, thereby separating into blocks. Whether or not the stack of deformed Cretaceous blocks was already displaced during the excavation process remains an open question. The analysis of the deformation microstructure indicates that a shock metamorphic overprint is restricted to dike injections with an exception of the so called "paraconglomerate." Abundant organic matter in the Yax-1 core was present before the impact and was mobilized by impact-induced heating and suggests that 12 km^3 of organic material was excavated during the cratering process.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2004.tb01129.x