• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 7 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 7 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoil-1, Chicxulub impact crater, Mexico

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    14977-17313-1-PB.pdf
    Size:
    1.843Mb
    Format:
    PDF
    Download
    Author
    Kenkmann, T.
    Wittmann, W.
    Scherler, D.
    Issue Date
    2004-01-01
    Keywords
    Cretaceous
    shock metamorphism
    Brittle deformation
    
    Metadata
    Show full item record
    Citation
    Kenkmann, T., Wittmann, A., & Scherler, D. (2004). Structure and impact indicators of the Cretaceous sequence of the ICDP drill core Yaxcopoil‐1, Chicxulub impact crater, Mexico. Meteoritics & Planetary Science, 39(7), 1069-1088.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655856
    DOI
    10.1111/j.1945-5100.2004.tb01129.x
    Additional Links
    https://meteoritical.org/
    Abstract
    As part of the ICDP Chicxulub Scientific Drilling Project, the Yaxcopoil-1 (Yax-1) bore hole was drilled 60 km south-southwest of the center of the 180 km-diameter Chicxulub impact structure down to a depth of 1511 m. A sequence of 615 m of deformed Cretaceous carbonates and sulfates was recovered below a 100 m-thick unit of suevitic breccias and 795 m of post-impact Tertiary rocks. The Cretaceous rocks are investigated with respect to deformation features and shock metamorphism to better constrain the deformational overprint and the kinematics of the cratering process. The sequence displays variable degrees of impact-induced brittle damage and post-impact brittle deformation. The degree of tilting and faulting of the Cretaceous sequence was analyzed using 360-core scans and dip-meter log data. In accordance with lithological information, these data suggest that the sedimentary sequence represents a number of structural units that are tilted and moved with respect to each other. Three main units and nine sub-units were discriminated. Brittle deformation is most intense at the top of the sequence and at 13001400 m. Within these zones, suevitic dikes, polymict clastic dikes, and impact melt rock dikes occur and may locally act as decoupling horizons. The degree of brittle deformation depends on lithology; massive dolomites are affected by penetrative faulting, while stratified calcarenites and bituminous limestones display localized faulting. The deformation pattern is consistent with a collapse scenario of the Chicxulub transient crater cavity. It is believed that the Cretaceous sequence was originally located outside the transient crater cavity and eventually moved downward and toward the center to its present position between the peak ring and the crater rim, thereby separating into blocks. Whether or not the stack of deformed Cretaceous blocks was already displaced during the excavation process remains an open question. The analysis of the deformation microstructure indicates that a shock metamorphic overprint is restricted to dike injections with an exception of the so called "paraconglomerate." Abundant organic matter in the Yax-1 core was present before the impact and was mobilized by impact-induced heating and suggests that 12 km^3 of organic material was excavated during the cratering process.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb01129.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 7 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.