SUPRACENTER: Locating fireball terminal bursts in the atmosphere using seismic arrivals
Citation
Edwards, W. N., & Hildebrand, A. R. (2004). SUPRACENTER: Locating fireball terminal bursts in the atmosphere using seismic arrivals. Meteoritics & Planetary Science, 39(9), 1449-1460.Publisher
The Meteoritical SocietyJournal
Meteoritics & Planetary ScienceAdditional Links
https://meteoritical.org/Abstract
Terminal bursts and fragmentations of meteoritic fireballs in the atmosphere may now be accurately located in four dimensions (three spatial + temporal) using seismic arrival times of their acoustic waves recorded by seismometer, camera, microphone, and/or infrasound stations on the ground. A computer program, SUPRACENTER, calculates travel times by ray tracing through realistic atmospheres (that include winds) and locates source positions by minimization of travel time residuals. This is analogous to earthquake hypocenter location in the solid Earth but is done through a variably moving medium. Inclusion of realistic atmospheric ray tracing has removed the need for the simplifying assumption of an isotropic atmosphere or an approximation to account for wind drift. This drift is on the order of several km when strong, unidirectional winds are present in the atmosphere at the time of a fireballs occurrence. SUPRACENTER-derived locations of three seismically recorded fireballs: 1) the October 9, 1997 El Paso superbolide; 2) the January 25, 1989 Mt. Adams fireball; and 3) the May 6, 2000 Morávka fireball (with its associated meteorite fall), are consistent with (and, probably, an improvement upon) the locations derived from eyewitness, photographic, and video observations from the respective individual events. If direct acoustic seismic arrivals can be quickly identified for a fireball event, terminal burst locations (and, potentially, trajectory geometry and velocity information) can be quickly derived, aiding any meteorite recovery efforts during the early days after the fall. Potentially, seismic records may yield enough trajectory information to assist in the derivation of orbits for entering projectiles.Type
Articletext
Language
enISSN
1945-5100ae974a485f413a2113503eed53cd6c53
10.1111/j.1945-5100.2004.tb00121.x