• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 9 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 9 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evidence in CO3.0 chondrules for a drift in the O isotopic composition of the solar nebula

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15027-17363-1-PB.pdf
    Size:
    5.859Mb
    Format:
    PDF
    Download
    Author
    Wasson, J.
    Rubin, A. E.
    Yurimoto, H.
    Issue Date
    2004-01-01
    Keywords
    Solar nebula O-isotopic composition
    Chondrule relict grains
    O-isotope Chondrules
    
    Metadata
    Show full item record
    Citation
    Wasson, J. T., Rubin, A. E., & Yurimoto, H. (2004). Evidence in CO3.0 chondrules for a drift in the O isotopic composition of the solar nebula. Meteoritics & Planetary Science, 39(9), 1591-1598.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655905
    DOI
    10.1111/j.1945-5100.2004.tb00129.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Several recent studies have shown that materials such as magnetite that formed in asteroids tend to have higher Delta-17O (=delta-16O - 0.52 x delta-18O) values than those recorded in unaltered chondrules. Other recent studies have shown that, in sets of chondrules from carbonaceous chondrites, ∆17O tends to increase as the FeO contents of the silicates increase. We report a comparison of the O isotopic composition of olivine phenocrysts in low-FeO (less than or equal to Fa1) type I and high-FeO (greater than or equal to Fa15) type II porphyritic chondrules in the highly primitive CO3.0 chondrite Yamato-81020. In agreement with a similar study of chondrules in CO3.0 ALH A77307 by Jones et al. (2000), Delta-17O tends to increase with increasing FeO. We find that ∆17O values are resolved (but only marginally) between the two sets of olivine phenocrysts. In two of the high-FeO chondrules, the difference between Delta-17O of the late-formed, high-FeO phenocryst olivine and those in the low-FeO cores of relict grains is well-resolved (although one of the relicts is interpreted to be a partly melted amoeboid olivine inclusion by Yurimoto and Wasson [2002]). It appears that, during much of the chondrule-forming period, there was a small upward drift in the Delta-17O of nebular solids and that relict cores preserve the record of a different (and earlier) nebular environment.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00129.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 9 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.