• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 11 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 11 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A shock-produced (Mg, Fe)SiO3 glass in the Suizhou meteorite

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15045-17381-1-PB.pdf
    Size:
    963.1Kb
    Format:
    PDF
    Download
    Author
    Chen, Ming
    Xie, Xiande
    El Goresy, Ahmed
    Issue Date
    2004-01-01
    Keywords
    (Mg
    Fe)SiO3 glass
    Perovskite
    shock
    pyroxenes
    Suizhou
    
    Metadata
    Show full item record
    Citation
    Chen, M., Xie, X., & El Goresy, A. (2004). A shock‐produced (Mg, Fe)SiO3 glass in the Suizhou meteorite. Meteoritics & Planetary Science, 39(11), 1797-1808.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655922
    DOI
    10.1111/j.1945-5100.2004.tb00076.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Ovoid grains consisting of glass of stoichiometric (Mg, Fe)SiO3 composition that is intimately associated with majorite were identified in the shock veins of the Suizhou meteorite. The glass is surrounded by a thick rim of polycrystalline majorite and is identical in composition to the parental low-Ca pyroxene and majorite. These ovoid grains are surrounded by a fine-grained matrix composed of majorite-pyrope garnet, ringwoodite, magnesiowstite, metal, and troilite. This study strongly suggests that some precursor pyroxene grains inside the shock veins were transformed to perovskite within the pyroxene due to a relatively low temperature, while at the rim region pyroxene grains transformed to majorite due to a higher temperature. After pressure release, perovskite vitrified at post-shock temperature. The existence of vitrified perovskite indicates that the peak pressure in the shock veins exceeds 23 GPa. The post-shock temperature in the meteorite could have been above 477 degrees C. This study indicates that the occurrence of high-pressure minerals in the shock veins could not be used as a ubiquitous criterion for evaluating the shock stage of meteorites.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00076.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 11 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.