• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 12 (2004)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 39 (2004)
    • Meteoritics & Planetary Science, Volume 39, Number 12 (2004)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Planetary accretion, oxygen isotopes, and the central limit theorem

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15058-17394-2-PB.pdf
    Size:
    363.3Kb
    Format:
    PDF
    Download
    Author
    Nuth, J. A.
    Hill, H. G. M.
    Issue Date
    2004-01-01
    Keywords
    planetary accretion
    oxygen isotopes
    Central limit theorem
    Genesis mission
    Isotopic fractionation
    
    Metadata
    Show full item record
    Citation
    Nuth, J. A. & Hill, H. G. M. (2004). Planetary accretion, oxygen isotopes, and the central limit theorem. Meteoritics & Planetary Science, 39(12), 1957-1965.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655935
    DOI
    10.1111/j.1945-5100.2004.tb00089.x
    Additional Links
    https://meteoritical.org/
    Abstract
    The accumulation of presolar dust into increasingly larger aggregates such as calciumaluminum- rich inclusions (CAIs) and chondrules, asteroids, and planets should result in a drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the central limit theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula, no matter what size objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified but relatively long-lived process acted on the solids in the solar nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation, or that the nebula was heterogeneous (at least in oxygen) and maintained this heterogeneity throughout most of its nebular history. Depending on its origin, large-scale nebular heterogeneity could have significant consequences for many areas of cosmochemistry, including the application of well-known isotopic systems to the dating of nebular events and the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance. The evidence supports a scenario wherein the oxygen isotopic composition of nebular solids becomes progressively depleted in 16O with time due to chemical processing within the nebula, rather than a scenario where 16O-rich dust and other materials are injected into the nebula, possibly causing its initial collapse.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2004.tb00089.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 39, Number 12 (2004)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.