• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 2 (2005)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 2 (2005)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The formation of the Widmanstätten structure in meteorites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15087-17423-1-PB.pdf
    Size:
    3.222Mb
    Format:
    PDF
    Download
    Author
    Yang, J.
    Goldstein, J. I.
    Issue Date
    2005-01-01
    Keywords
    iron meteorites
    Martensite
    Widmanstätten pattern
    
    Metadata
    Show full item record
    Citation
    Yang, J., & Goldstein, J. I. (2005). The formation of the Widmanstätten structure in meteorites. Meteoritics & Planetary Science, 40(2), 239-253.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655964
    DOI
    10.1111/j.1945-5100.2005.tb00378.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We have evaluated various mechanisms proposed for the formation of the Widmanstätten pattern in iron meteorites and propose a new mechanism for low P meteoritic metal. These mechanisms can also be used to explain how the metallic microstructures developed in chondrites and stony-iron meteorites. The Widmanstätten pattern in high P iron meteorites forms when meteorites enter the three-phase field alpha + gamma + Ph via cooling from the gamma + Ph field. The Widmanstätten pattern in low P iron meteorites forms either at a temperature below the (alpha + gamma)/(alpha + gamma + Ph) boundary or by the decomposition of martensite below the martensite start temperature. The reaction gamma --> alpha + gamma, which is normally assumed to control the formation of the Widmanstätten pattern, is not applicable to the metal in meteorites. The formation of the Widmanstätten pattern in the vast majority of low P iron meteorites (which belong to chemical groups IAB-IIICD, IIIAB, and IVA) is controlled by mechanisms involving the formation of martensite alpha2. We propose that the Widmanstätten structure in these meteorites forms by the reaction gamma --> alpha2 + gamma --> alpha + gamma, in which alpha2 decomposes to the equilibrium alpha and gamma phases during the cooling process. To determine the cooling rate of an individual iron meteorite, the appropriate formation mechanism for the Widmanstätten pattern must first be established. Depending on the Ni and P content of the meteorite, the kamacite nucleation temperature can be determined from either the (gamma + Ph)(alpha + gamma + Ph) boundary, the (alpha + gamma)/(alpha + gamma + Ph) boundary, or the Ms temperature. With the introduction of these three mechanisms and the specific phase boundaries and the temperatures where transformations occur, it is no longer necessary to invoke arbitrary amounts of under-cooling in the calculation of the cooling rate. We conclude that martensite decomposition via the reactions gamma --> alpha 2 --> alpha + gamma and gamma --> alpha2 + gamma --> alpha + gamma are responsible for the formation of plessite in irons and the metal phases of mesosiderites, chondrites, and pallasites. The hexahedrites (low P members of chemical group IIAB) formed by the massive transformation through the reaction gamma --> alpha-m --> alpha at relatively high temperature in the two-phase alpha + gamma region of the Fe-Ni-P phase diagram near the alpha/(alpha + gamma) phase boundary.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2005.tb00378.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 40, Number 2 (2005)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.