• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 4 (2005)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 4 (2005)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Laser argon dating of melt breccias from the Siljan impact structure, Sweden: Implications for a possible relationship to Late Devonian extinction events

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15115-17465-1-PB.pdf
    Size:
    19.08Mb
    Format:
    PDF
    Download
    Author
    Reimold, W. U.
    Kelley, S. P.
    Sherlock, S. C.
    Henkel, H.
    Koeberl, C.
    Issue Date
    2005-01-01
    Keywords
    Argon dating
    Famennian boundary
    Mass extinction
    
    Metadata
    Show full item record
    Citation
    Reimold, W. U., Kelley, S. P., Sherlock, S. C., Henkel, H., & Koeberl, C. (2005). Laser argon dating of melt breccias from the Siljan impact structure, Sweden: Implications for a possible relationship to Late Devonian extinction events. Meteoritics & Planetary Science, 40(4), 591-607.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/655989
    DOI
    10.1111/j.1945-5100.2005.tb00965.x
    Additional Links
    https://meteoritical.org/
    Abstract
    In earlier studies, the 65-75 km diameter Siljan impact structure in Sweden has been linked to the Late Devonian mass extinction event. The Siljan impact event has previously been dated by KAr and Ar-Ar chronology at 342-368 Ma, with the commonly quoted age being 362.7 +/- 2.2 Ma (2 sigma, recalculated using currently accepted decay constants). Until recently, the accepted age for the Frasnian/Famennian boundary and associated extinction event was 364 Ma, which is within error limits of this earlier Siljan age. Here we report new Ar-Ar ages extracted by laser spot and laser step heating techniques for several melt breccia samples from Siljan (interpreted to be impact melt breccia). The analytical results show some scatter, which is greater in samples with more extensive alteration; these samples generally yield younger ages. The two samples with the least alteration yield the most reproducible weighted mean ages: one yielded a laser spot age of 377.2 +/- 2.5 Ma (95% confidence limits) and the other yielded both a laser spot age of 376.1 +/- 2.8 Ma (95% confidence limits) and a laser stepped heating plateau age over 70.6% 39Ar release of 377.5 +/- 2.4 Ma (2 sigma). Our conservative estimate for the age of Siljan is 377 +/- 2 Ma (95% confidence limits), which is significantly different from both the previously accepted age for the Frasnian/Famennian (F/F) boundary and the previously quoted age of Siljan. However, the age of the F/F boundary has recently been revised to 374.5 +/- 2.6 Ma by the International Commission for Stratigraphy, which is, within error, the same as our new age. However, the currently available age data are not proof that there was a connection between the Siljan impact event and the F/F boundary extinction. This new result highlights the dual problems of dating meteorite impacts where fine-grained melt rocks are often all that can be isotopically dated, and constraining the absolute age of biostratigraphic boundaries, which can only be constrained by age extrapolation. Further work is required to develop and improve the terrestrial impact age record and test whether or not the terrestrial impact flux increased significantly at certain times, perhaps resulting in major extinction events in Earths biostratigraphic record.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2005.tb00965.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 40, Number 4 (2005)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.