• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 6 (2005)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 6 (2005)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15133-17485-2-PB.pdf
    Size:
    1.581Mb
    Format:
    PDF
    Download
    Author
    Collins, G. S.
    Melosh, H. J.
    Marcus, R. A.
    Issue Date
    2005-01-01
    Keywords
    impact cratering
    meteorite impacts
    Web program
    
    Metadata
    Show full item record
    Citation
    Collins, G. S., Melosh, H. J., & Marcus, R. A. (2005). Earth impact effects program: A web‐based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & planetary science, 40(6), 817-840.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656006
    DOI
    10.1111/j.1945-5100.2005.tb00157.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We have developed a Web-based program for quickly estimating the regional environmental consequences of a comet or asteroid impact on Earth(www.lpl.arizona.edu/ impacteffects). This paper details the observations, assumptions and equations upon which the program is based. It describes our approach to quantifying the principal impact processes that might affect the people, buildings, and landscape in the vicinity of an impact event and discusses the uncertainty in our predictions. The program requires six inputs: impactor diameter, impactor density, impact velocity before atmospheric entry, impact angle, the distance from the impact at which the environmental effects are to be calculated, and the target type (sedimentary rock, crystalline rock, or a water layer above rock). The program includes novel algorithms for estimating the fate of the impactor during atmospheric traverse, the thermal radiation emitted by the impact-generated vapor plume (fireball), and the intensity of seismic shaking. The program also approximates various dimensions of the impact crater and ejecta deposit, as well as estimating the severity of the air blast in both crater-forming and airburst impacts. We illustrate the utility of our program by examining the predicted environmental consequences across the United States of hypothetical impact scenarios occurring in Los Angeles. We find that the most wide-reaching environmental consequence is seismic shaking: both ejecta deposit thickness and air-blast pressure decay much more rapidly with distance than with seismic ground motion. Close to the impact site the most devastating effect is from thermal radiation; however, the curvature of the Earth implies that distant localities are shielded from direct thermal radiation because the fireball is below the horizon.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2005.tb00157.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 40, Number 6 (2005)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.