• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 6 (2005)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 6 (2005)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nitrogen and noble gases in micrometeorites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15138-17490-1-PB.pdf
    Size:
    3.183Mb
    Format:
    PDF
    Download
    Author
    Marty, B.
    Robert, P.
    Zimmermann, L.
    Issue Date
    2005-01-01
    Keywords
    Martian meteorites
    Chassigny Martian meteorites
    Dating
    
    Metadata
    Show full item record
    Citation
    Marty, B., Robert, P., & Zimmermann, L. (2005). Nitrogen and noble gases in micrometeorites. Meteoritics & Planetary Science, 40(6), 881-894.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656010
    DOI
    10.1111/j.1945-5100.2005.tb00161.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Micrometeorites (MMs) currently represent the largest steady-state mass flux of extraterrestrial matter to Earth and may have delivered a significant fraction of volatile elements and organics to the Earths surface. Nitrogen and noble gases contents and isotopic ratios have been measured in a suite of 17 micrometeorites recovered in Antarctica (sampled in blue ice at Cap Prudhomme) and Greenland (separated from cryoconite) that have experienced variable thermal metamorphism during atmospheric entry. MMs were pyrolized using a CO2 laser and the released gases were analyzed for nitrogen and noble gas abundances and isotopic ratios by static mass spectrometry after specific purification. Noble gases are a mixture of cosmogenic, solar, atmospheric, and possibly chondritic components, with atmospheric being predominant in severely heated MMs. delta-15N values vary between -240 +/- 62 ppm and +206 +/- 12 ppm, with most values being within the range of terrestrial and chondritic signatures, given the uncertainties. Crystalline MMs present very high noble gas contents up to two orders of magnitude higher than carbonaceous chondrite concentrations. In contrast, nitrogen contents between 4 ppm and 165 ppm are much lower than those of carbonaceous chondrites, evidencing either initially low N content in MMs and/or degradation of phases hosting nitrogen during atmospheric entry heating and terrestrial weathering. Assuming that the original N content of MMs was comparable to that of carbonaceous chondrites, the contribution of nitrogen delivery by these objects to the terrestrial environment would have been probably marginal from 3.8 Gyr ago to present but could have been significant (~10%) in the Hadean, and even predominant during the latest stages of terrestrial accretion.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2005.tb00161.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 40, Number 6 (2005)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.