• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 7 (2005)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 7 (2005)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    "New" lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15146-17498-1-PB.pdf
    Size:
    2.891Mb
    Format:
    PDF
    Download
    Author
    Warren, P. H.
    Ulff-Møller, F.
    Kallemeyn, G. W.
    Issue Date
    2005-01-01
    Keywords
    Impact melt breccias
    KREEP
    Lunaites
    Lunar Siderophile elements
    
    Metadata
    Show full item record
    Citation
    Warren, P. H., Ulff‐Møller, F., & Kallemeyn, G. W. (2005). “New” lunar meteorites: Impact melt and regolith breccias and large‐scale heterogeneities of the upper lunar crust. Meteoritics & Planetary Science, 40(7), 989-1014.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656018
    DOI
    10.1111/j.1945-5100.2005.tb00169.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy-fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly-brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact-melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact-melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact-heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3- incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al-poor composition (14 wt% Al2O3, 7 micrograms/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57 degrees E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ~1.8x chondritic. In contrast, lunaite impact-melt breccias have consistently chondritic Ni/ Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP-poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg-suite of pristine nonmare rocks in its most pure form, unaltered by the major KREEP-assimilation that is so common among Apollo Mg-suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ~29-30 wt(implying about 17-19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a ferroan magma ocean (Warren 1990).
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2005.tb00169.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 40, Number 7 (2005)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.