• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 7 (2005)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 40 (2005)
    • Meteoritics & Planetary Science, Volume 40, Number 7 (2005)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15148-17500-1-PB.pdf
    Size:
    2.822Mb
    Format:
    PDF
    Download
    Author
    Menzies, O. N.
    Bland, P. A.
    Berry, F. J.
    Cressey, G.
    Issue Date
    2005-01-01
    Keywords
    Mössbauer spectroscopy
    x-ray diffraction
    
    Metadata
    Show full item record
    Citation
    Menzies, O. N., Bland, P. A., Berry, F. J., & Cressey, G. (2005). A Mössbauer spectroscopy and X‐ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism. Meteoritics & Planetary Science, 40(7), 1023-1042.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656020
    DOI
    10.1111/j.1945-5100.2005.tb00171.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We present a method that combines Mössbauer spectroscopy and X-ray diffraction to quantify the modal mineralogy of unequilibrated ordinary chondrites (UOCs). Despite being a fundamental tool in the interpretation of geological systems, there are no modal mineralogical data available for these meteorites. This is due to their fine-grained nature, highly heterogeneous silicate mineralogy, and the presence of poorly characterized phases. Consequently, it has not been possible to obtain accurate modal mineralogy by conventional techniques such as point counting. Here we use Mössbauer spectroscopy as a preliminary identification technique and X-ray diffraction provides the quantification for a suite of recent UOC falls. We find the most primitive UOCs to contain a significant amount of phyllosilicate material that was converted during metamorphism to form ferromagnesian silicates. A complete suite of Antarctic samples is analyzed by each method to observe mineralogical trends and these are compared with trends shown by recent falls. The fact that mineralogical relationships shown by finds and falls are in agreement allows us to be confident that we are observing the products of pre-terrestrial alteration. Mössbauer spectroscopy reveals evidence of steadily increasing reduction with metamorphism in the UOCs. Because this technique allows comparisons to be made between UOCs and EOCs, our reduction sequence can be combined with other evidence showing progressive oxidation in the EOCs. This yields an integrated model of changing redox conditions on equilibrating ordinary chondrite parent bodies.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2005.tb00171.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 40, Number 7 (2005)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.