Show simple item record

dc.contributor.authorOba, Y.
dc.contributor.authorNaraoka, H.
dc.date.accessioned2021-02-12T21:40:46Z
dc.date.available2021-02-12T21:40:46Z
dc.date.issued2006-01-01
dc.identifier.citationOba, Y., & Naraoka, H. (2006). Carbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter from the Murchison meteorite. Meteoritics & Planetary Science, 41(8), 1175-1181.
dc.identifier.issn1945-5100
dc.identifier.doi10.1111/j.1945-5100.2006.tb00514.x
dc.identifier.urihttp://hdl.handle.net/10150/656164
dc.description.abstractLow molecular weight monocarboxylic acids, including acetic acid, are some of the most abundant organic compounds in carbonaceous chondrites. So far, the 13C- and D-enriched signature of water-extractable carboxylic acids has implied an interstellar contribution to their origin. However, it also has been proposed that monocarboxylic acids could be formed by aqueous reaction on the meteorite parent body. In this study, we conducted hydrous pyrolysis of macromolecular organic matter purified from the Murchison meteorite (CM2) to examine the generation of monocarboxylic acids with their stable carbon isotope measurement. During hydrous pyrolysis of macromolecular organic matter at 270-330 degrees C, monocarboxylic acids with carbon numbers ranging from 2 (C2) to 5 (C5) were detected, acetic acid (CH3COOH; C2) being the most abundant. The concentration of the generated acetic acid increased with increasing reaction temperature; up to 0.48 mmol acetic acid/g macromolecular organic matter at 330 degrees C. This result indicates that the Murchison macromolecule has a potential to generate at least ~0.4 mg acetic acid/g meteorite, which is about four times higher than the amount of water-extractable acetic acid reported from Murchison. The carbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter is ~-27 ppm (versus PDB), which is much more depleted in 13C than the water-extractable acetic acid reported from Murchison. Intramolecular carbon isotope distribution shows that methyl (CH3-)-C is more enriched in 13C relative to carboxyl (-COOH)-C, indicating a kinetic process for this formation. Although the experimental condition of this study (i.e., 270-330 degrees C for 72 h) may not simulate a reaction condition on parent bodies of carbonaceous chondrite, it may be possible to generate monocarboxylic acids at lower temperatures for a longer period of time.
dc.language.isoen
dc.publisherThe Meteoritical Society
dc.relation.urlhttps://meteoritical.org/
dc.rightsCopyright © The Meteoritical Society
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectorganic compounds
dc.subjectAntarctic meteorites
dc.subjectisotopes
dc.titleCarbon isotopic composition of acetic acid generated by hydrous pyrolysis of macromolecular organic matter from the Murchison meteorite
dc.typeArticle
dc.typetext
dc.identifier.journalMeteoritics & Planetary Science
dc.description.collectioninformationThe Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information.
dc.eprint.versionFinal published version
dc.description.admin-noteMigrated from OJS platform February 2021
dc.source.volume41
dc.source.issue8
dc.source.beginpage1175
dc.source.endpage1181
refterms.dateFOA2021-02-12T21:40:46Z


Files in this item

Thumbnail
Name:
15305-17658-1-PB.pdf
Size:
311.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record