• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 41 (2006)
    • Meteoritics & Planetary Science, Volume 41, Number 11 (2006)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 41 (2006)
    • Meteoritics & Planetary Science, Volume 41, Number 11 (2006)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Thermodynamic constraints on fayalite formation on parent bodies of chondrites

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15359-17712-1-PB.pdf
    Size:
    2.435Mb
    Format:
    PDF
    Download
    Author
    Zolotov, M. Yu.
    Mironenko, M. V.
    Shock, E. L.
    Issue Date
    2006-01-01
    Keywords
    unequilibrated meteorites
    aqueous alteration
    thermal metamorphism
    olivine
    
    Metadata
    Show full item record
    Citation
    Zolotov, M. Y., Mironenko, M. V., & Shock, E. L. (2006). Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteoritics & Planetary Science, 41(11), 1775-1796.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656214
    DOI
    10.1111/j.1945-5100.2006.tb00451.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Thermochemical equilibria are calculated in the multicomponent gas-solution-rock system in order to evaluate the formation conditions of fayalite, (Fe0.881.0Mg0.120)2SiO4, Fa88100, in unequilibrated chondrites. Effects of temperature, pressure, water/rock ratio, rock composition, and progress of alteration are evaluated. The modeling shows that fayalite can form as a minor secondary and transient phase with and without aqueous solution. Fayalite can form at temperatures below ~350 degrees C, but only in a narrow range of water/rock ratios that designates a transition between aqueous and metamorphic conditions. Pure fayalite forms at lower temperatures, higher water/rock ratios, and elevated pressures that correspond to higher H2/H2O ratios. Lower pressure and water/rock ratios and higher temperatures favor higher Mg content in olivine. In equilibrium assemblages, fayalite usually coexists with troilite, kamacite, magnetite, chromite, Ca-Fe pyroxene, and phyllosilicates. Formation of fayalite can be driven by changes in temperature, pressure, H2/H2O, and water/rock ratios. However, in fayalite-bearing ordinary and CV3 carbonaceous chondrites, the mineral could have formed during the aqueous-to-metamorphic transition. Dissolution of amorphous silicates in matrices and/or silica grains, as well as low activities of Mg solutes, favored aqueous precipitation of fayalite. During subsequent metamorphism, fayalite could have formed through the reduction of magnetite and/or dehydration of ferrous serpentine. Further metamorphism should have caused reductive transformation of fayalite to Ca-Fe pyroxene and secondary metal, which is consistent with observations in metamorphosed chondrites. Although bulk compositions of matrices/chondrites have only a minor effect on fayalite stability, specific alteration paths led to different occurrences, quantities, and compositions of fayalite in chondrites.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2006.tb00451.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 41, Number 11 (2006)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.