We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.authorZolotov, M. Yu.
dc.contributor.authorMironenko, M. V.
dc.contributor.authorShock, E. L.
dc.date.accessioned2021-02-12T21:41:06Z
dc.date.available2021-02-12T21:41:06Z
dc.date.issued2006-01-01
dc.identifier.citationZolotov, M. Y., Mironenko, M. V., & Shock, E. L. (2006). Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteoritics & Planetary Science, 41(11), 1775-1796.
dc.identifier.issn1945-5100
dc.identifier.doi10.1111/j.1945-5100.2006.tb00451.x
dc.identifier.urihttp://hdl.handle.net/10150/656214
dc.description.abstractThermochemical equilibria are calculated in the multicomponent gas-solution-rock system in order to evaluate the formation conditions of fayalite, (Fe0.881.0Mg0.120)2SiO4, Fa88100, in unequilibrated chondrites. Effects of temperature, pressure, water/rock ratio, rock composition, and progress of alteration are evaluated. The modeling shows that fayalite can form as a minor secondary and transient phase with and without aqueous solution. Fayalite can form at temperatures below ~350 degrees C, but only in a narrow range of water/rock ratios that designates a transition between aqueous and metamorphic conditions. Pure fayalite forms at lower temperatures, higher water/rock ratios, and elevated pressures that correspond to higher H2/H2O ratios. Lower pressure and water/rock ratios and higher temperatures favor higher Mg content in olivine. In equilibrium assemblages, fayalite usually coexists with troilite, kamacite, magnetite, chromite, Ca-Fe pyroxene, and phyllosilicates. Formation of fayalite can be driven by changes in temperature, pressure, H2/H2O, and water/rock ratios. However, in fayalite-bearing ordinary and CV3 carbonaceous chondrites, the mineral could have formed during the aqueous-to-metamorphic transition. Dissolution of amorphous silicates in matrices and/or silica grains, as well as low activities of Mg solutes, favored aqueous precipitation of fayalite. During subsequent metamorphism, fayalite could have formed through the reduction of magnetite and/or dehydration of ferrous serpentine. Further metamorphism should have caused reductive transformation of fayalite to Ca-Fe pyroxene and secondary metal, which is consistent with observations in metamorphosed chondrites. Although bulk compositions of matrices/chondrites have only a minor effect on fayalite stability, specific alteration paths led to different occurrences, quantities, and compositions of fayalite in chondrites.
dc.language.isoen
dc.publisherThe Meteoritical Society
dc.relation.urlhttps://meteoritical.org/
dc.rightsCopyright © The Meteoritical Society
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectunequilibrated meteorites
dc.subjectaqueous alteration
dc.subjectthermal metamorphism
dc.subjectolivine
dc.titleThermodynamic constraints on fayalite formation on parent bodies of chondrites
dc.typeArticle
dc.typetext
dc.identifier.journalMeteoritics & Planetary Science
dc.description.collectioninformationThe Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information.
dc.eprint.versionFinal published version
dc.description.admin-noteMigrated from OJS platform February 2021
dc.source.volume41
dc.source.issue11
dc.source.beginpage1775
dc.source.endpage1796
refterms.dateFOA2021-02-12T21:41:06Z


Files in this item

Thumbnail
Name:
15359-17712-1-PB.pdf
Size:
2.435Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record