• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 2 (2007)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 2 (2007)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15391-17744-1-PB.pdf
    Size:
    8.253Mb
    Format:
    PDF
    Download
    Author
    Usui, Tomohiro
    McSween, Harry Y.
    Issue Date
    2007-01-01
    Keywords
    Dawn mission
    named Asteroids
    HED meteorites
    Vesta
    
    Metadata
    Show full item record
    Citation
    Usui, T., & McSween, H. Y. (2007). Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission. Meteoritics & Planetary Science, 42(2), 255-269.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656244
    DOI
    10.1111/j.1945-5100.2007.tb00231.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Asteroid 4 Vesta, believed to be the parent body of the howardite, eucrite, and diogenite (HED) meteorites, will be investigated by the Dawn orbiting spacecraft. Dawn carries a gamma ray and neutron detector (GRaND) that will measure and map some major- and trace-element abundances. Drawing on HED geochemistry, we propose a mixing model that uses element ratios appropriate for the interpretation of GRaND data.Because the spatial resolution of GRaND is relatively coarse, the analyzed chemical compositions on the surface of Vesta will likely reflect mixing of three endmember components: diogenite, cumulate eucrite, and basaltic eucrite. Reliability of the mixing model is statistically investigated based on published whole-rock data for HED meteorites. We demonstrate that the mixing model can accurately estimate the abundances of all the GRaND-analyzed major elements, as well as of minor elements (Na, Cr, and Mn) not analyzed by this instrument. We also show how a similar mixing model can determine the modal abundance of olivine, and we compare estimated and normative olivine data for olivine-bearing diogenites. By linking the compositions of well-analyzed HED meteorites with elemental mapping data from GRaND, this study may help constrain the geological context for HED meteorites and provide new insight into the magmatic evolution of Vesta.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2007.tb00231.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 42, Number 2 (2007)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.