• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 3 (2007)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 3 (2007)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15399-17752-1-PB.pdf
    Size:
    1006.Kb
    Format:
    PDF
    Download
    Author
    Noguchi, T.
    Nakamura, T.
    Okudaira, K.
    Yano, H.
    Sugita, S.
    Burchell, M. J.
    Issue Date
    2007-01-01
    Keywords
    hypervelocities
    silica aerogel
    
    Metadata
    Show full item record
    Citation
    Noguchi, T., Nakamura, T., Okudaira, K., Yano, H., Sugita, S., & Burchell, M. J. (2007). Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust. Meteoritics & Planetary Science, 42(3), 357-372.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656252
    DOI
    10.1111/j.1945-5100.2007.tb00239.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Outside the Earths atmosphere, silica aerogel is one of the best materials to capture fine grained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light-gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s^(-1) similar to the flyby speed at comet P/Wild-2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X-ray diffraction (SR-XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE-SEM). SR-XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR-XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 degrees C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 degrees C/micrometer were estimated near the surface of the grains (<2 micrometers thick) by TEM observation. Our data suggests that the interior of >4 micrometers across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 degrees C at the center.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2007.tb00239.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 42, Number 3 (2007)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.