• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 9 (2007)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 9 (2007)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Tsunami generation and propagation from the Mjølnir asteroid impact

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15482-17835-1-PB.pdf
    Size:
    4.978Mb
    Format:
    PDF
    Download
    Author
    Glimsdal, S.
    Pedersen, G. K.
    Langtangen, H. P.
    Shuvalov, V.
    Dypvik, H.
    Issue Date
    2007-01-01
    Keywords
    Mjølnir impact crater Norway
    impact modeling
    marine impact
    
    Metadata
    Show full item record
    Citation
    Glimsdal, S., Pedersen, G. K., Langtangen, H. P., Shuvalov, V., & Dypvik, H. (2007). Tsunami generation and propagation from the Mjølnir asteroid impact. Meteoritics & Planetary Science, 42(9), 1473-1493.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656323
    DOI
    10.1111/j.1945-5100.2007.tb00586.x
    Additional Links
    https://meteoritical.org/
    Abstract
    In the late Jurassic period, about 142 million years ago, an asteroid hit the shallow paleo-Barents Sea, north of present-day Norway. The geological structure resulting from the impact is today known as the Mjølnir crater. The present work attempts to model the generation and the propagation of the tsunami from the Mjølnir impact. A multi-material hydrocode SOVA is used to model the impact and the early stages of tsunami generation, while models based on shallow-water theories are used to study the subsequent wave propagation in the paleo-Barents Sea. We apply several wave models of varying computational complexity. This includes both three-dimensional and radially symmetric weakly dispersive and nonlinear Boussinesq equations, as well as equations based on nonlinear ray theory. These tsunami models require a reconstruction of the bathymetry of the paleo- Barents Sea. The Mjølnir tsunami is characteristic of large bolides impacting in shallow sea; in this case the asteroid was about 1.6 km in diameter and the water depth was around 400 m. Contrary to earthquake- and slide-generated tsunamis, this tsunami featured crucial dispersive and nonlinear effects: a few minutes after the impact, the ocean surface was formed into an undular bore, which developed further into a train of solitary waves. Our simulations indicate wave amplitudes above 200 m, and during shoaling the waves break far from the coastlines in rather deep water. The tsunami induced strong bottom currents, in the range of 30-90 km/h, which presumably caused a strong reworking of bottom sediments with dramatic consequences for the marine environment.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2007.tb00586.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 42, Number 9 (2007)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.