• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 11 (2007)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 11 (2007)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Post-impact structural crater modification due to sediment loading: An overlooked process

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15522-17875-1-PB.pdf
    Size:
    908.5Kb
    Format:
    PDF
    Download
    Author
    Tsikalas, F.
    Faleide, J. I.
    Issue Date
    2007-01-01
    Keywords
    physical properties
    post-impact alteration
    impact structures
    
    Metadata
    Show full item record
    Citation
    Tsikalas, F., & Faleide, J. I. (2007). Post‐impact structural crater modification due to sediment loading: An overlooked process. Meteoritics & Planetary Science, 42(11), 2013-2029.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    Description
    From the proceedings of the Workshop on Impact Craters as Indicators for Planetary Environmental Evolution and Astrobiology held in June 2006 in Östersund, Sweden.
    URI
    http://hdl.handle.net/10150/656363
    DOI
    10.1111/j.1945-5100.2007.tb00557.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Post-impact crater morphology and structure modifications due to sediment loading are analyzed in detail and exemplified in five well-preserved impact craters: Mjølnir, Chesapeake Bay, Chicxulub, Montagnais, and Bosumtwi. The analysis demonstrates that the geometry and the structural and stratigraphic relations of post-impact strata provide information about the amplitude, the spatial distribution, and the mode of post-impact deformation. Reconstruction of the original morphology and structure for the Mjølnir, Chicxulub, and Bosumtwi craters demonstrates the long-term subsidence and differential compaction that takes place between the crater and the outside platform region, and laterally within the crater structure. At Mjølnir, the central high developed as a prominent feature during post-impact burial, the height of the peak ring was enhanced, and the cumulative throw on the rim faults was increased. The original Chicxulub crater exhibited considerably less prominent peakring and inner-ring/crater-rim features than the present crater. The original relief of the peak ring was on the order of 420-570 m (currently 535-575 m); the relief on the inner ring/crater rim was 300 450 m (currently ~700 m). The original Bosumtwi crater exhibited a central uplift/high whose structural relief increased during burial (current height 101-110 m, in contrast to the original height of 85-110 m), whereas the surrounding western part of the annular trough was subdued more that the eastern part, exhibiting original depths of 43-68 m (currently 46 m) and 49-55 m (currently 50 m), respectively. Furthermore, a quantitative model for the porosity change caused by the Chesapeake Bay impact was developed utilizing the modeled density distribution. The model shows that, compared with the surrounding platform, the porosity increased immediately after impact up to 8.5% in the collapsed and brecciated crater center (currently +6% due to post-impact compaction). In contrast, porosity decreased by 2-3% (currently -3 to -4.5% due to post-impact compaction) in the peak-ring region. The lateral variations in porosity at Chesapeake Bay crater are compatible with similar porosity variations at Mjølnir crater, and are considered to be responsible for the moderate Chesapeake Bay gravity signature (annular low of -8 mGal instead of -15 mGal). The analysis shows that the reconstructions and the long-term alterations due to post-impact burial are closely related to the impact-disturbed target-rock volume and a brecciated region of laterally varying thickness and depth varying physical properties. The study further shows that several crater morphological and structural parameters are prone to post-impact burial modification and are either exaggerated or subdued during post-impact burial. Preliminary correction factors are established based on the integrated reconstruction and post-impact deformation analysis. The crater morphological and structural parameters, corrected from post-impact loading and modification effects, can be used to better constrain cratering scaling law estimates and impact-related consequences.
    Type
    Proceedings
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2007.tb00557.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 42, Number 11 (2007)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.