• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 12 (2007)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 12 (2007)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mass-dependent fractionation of nickel isotopes in meteoritic metal

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15527-17880-1-PB.pdf
    Size:
    2.675Mb
    Format:
    PDF
    Download
    Author
    Cook, D. L.
    Wadhwa, M.
    Clayton, R. N.
    Dauphas, N.
    Janney, P. E.
    Davis, A. M.
    Issue Date
    2007-01-01
    Keywords
    metal
    isotope fractionations
    cosmochemistry
    
    Metadata
    Show full item record
    Citation
    Cook, D. L., Wadhwa, M., Clayton, R. N., Dauphas, N., Janney, P. E., & Davis, A. M. (2007). Mass‐dependent fractionation of nickel isotopes in meteoritic metal. Meteoritics & Planetary Science, 42(12), 2067-2077.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656368
    DOI
    10.1111/j.1945-5100.2007.tb01008.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non-magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of approximately 0.4 amu^(-1). The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (approximately 0.0 to approximately 0.3 amu^(-1)) and chondrites (approximately 0.0 to approximately 0.2 amu^(-1)) are similar, whereas the range in pallasite metal (approximately -0.1 to approximately 0.0 amu^(-1)) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (approximately 0.0 to approximately 0.3 amu^(-1)) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by approximately 0.4 amu^(-1). In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe-Ni alloy and the development of the Widmanstätten pattern.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2007.tb01008.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 42, Number 12 (2007)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.