• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 43 (2008)
    • Meteoritics & Planetary Science, Volume 43, Number 9 (2008)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 43 (2008)
    • Meteoritics & Planetary Science, Volume 43, Number 9 (2008)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of micron-sized Fe,Ni metal grains in fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: Implications for asteroidal and preaccretionary models for aqueous alteration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15628-17981-1-PB.pdf
    Size:
    13.26Mb
    Format:
    PDF
    Download
    Author
    Chizmadia, L. J.
    Xu, Y.
    Schwappach, C.
    Brearley, A. J.
    Issue Date
    2008-01-01
    Keywords
    CM carbonaceous chondrite meteorites
    metal
    Accretionary rims
    aqueous alteration
    
    Metadata
    Show full item record
    Citation
    Chizmadia, L. J., Xu, Y., Schwappach, C., & Brearley, A. J. (2008). Characterization of micron‐sized Fe,Ni metal grains in fine‐grained rims in the Y‐791198 CM2 carbonaceous chondrite: Implications for asteroidal and preaccretionary models for aqueous alteration. Meteoritics & Planetary Science, 43(9), 1419-1438.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656469
    DOI
    10.1111/j.1945-5100.2008.tb01019.x
    Additional Links
    https://meteoritical.org/
    Abstract
    The presence of apparently unaltered, micron-sized Fe,Ni metal grains, juxtaposed against hydrated fine-grained rim materials in the CM2 chondrite Yamato (Y-) 791198 has been cited as unequivocal evidence of preaccretionary alteration. We have examined the occurrence, composition, and textural characteristics of 60 Fe,Ni metal grains located in fine-grained rims in Y-791198 using scanning electron microscopy (SEM) and electron microprobe analysis. In addition, three metal grains, prepared by focused ion beam (FIB) sample preparation techniques were studied by transmission electron microscopy (TEM). The metal grains are heterogeneously distributed within the rims. Electron microprobe analyses show that all the metal grains are kamacite with minor element contents (P, Cr, and Co) that lie either within or close to the range for other CM2 metal grains. X-ray maps obtained by electron microprobe show S, P, and/or Ca enrichments on the outermost parts of many of the metal grains. Z-contrast STEM imaging of FIB-prepared Fe,Ni metal grains show the presence of a small amount of a lower Z secondary phase on the surface of the grains and within indentations on the grain surfaces. Energy-filtered TEM (EFTEM) compositional mapping shows that these pits are enriched in oxygen and depleted in Fe relative to the metal. These observations are consistent with pitting corrosion of the metal on the edges of the grains and we suggest may be the result of the formation of Fe(OH)2, a common oxidation product of Fe metal. The presence of such a layer could have inhibited further alteration of the metal grains. These findings are consistent with alteration by an alkaline fluid as suggested by Zolensky et al. (1989), but the location of this alteration remains unconstrained, because Y-791198 was recovered from Antarctica and therefore may have experienced incipient terrestrial alteration. However, we infer that the extremely low degree of oxidation of the metal is inconsistent with weathering in Antarctica and that alteration in an extraterrestrial environment is more probable. Although the presence of unaltered or incipiently altered metal grains in these fine-grained rims could be interpreted as evidence for preaccretionary alteration, we suggest an alternative model in which metal alteration was inhibited by alkaline fluids on the asteroidal parent body.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2008.tb01019.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 43, Number 9 (2008)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.