• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 44 (2009)
    • Meteoritics & Planetary Science, Volume 44, Number 1 (2009)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 44 (2009)
    • Meteoritics & Planetary Science, Volume 44, Number 1 (2009)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cosmogenic nuclides in the solar gas-rich H3–6 chondrite breccia Frontier Mountain 90174

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15685-18038-1-PB.pdf
    Size:
    1.333Mb
    Format:
    PDF
    Download
    Author
    Leya, I.
    Welten, K. C.
    Nishiizumi, K.
    Caffee, M. W.
    Issue Date
    2009-01-01
    Keywords
    Cosmic-ray exposure history
    H ordinary chondrite meteorites Radionuclides
    regolith breccia
    
    Metadata
    Show full item record
    Citation
    Leya, I., Welten, K. C., Nishiizumi, K., & Caffee, M. W. (2009). Cosmogenic nuclides in the solar gas‐rich H3–6 chondrite breccia Frontier Mountain 90174. Meteoritics & Planetary Science, 44(1), 77-85.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656526
    DOI
    10.1111/j.1945-5100.2009.tb00718.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We re-evaluated the cosmic-ray exposure history of the H36 chondrite shower Frontier Mountain (FRO) 90174, which previously was reported to have a simple exposure history, an irradiation time of about 7 Ma, and a pre-atmospheric radius of 80-100 cm (Welten et al. 2001). Here we measured the concentrations and isotopic compositions of He, Ne, and Ar in 8 aliquots of 6 additional fragments of this shower, and 10Be and 26Al in the stone fractions of seven fragments. The radionuclide concentrations in the stone fractions, combined with those in the metal fractions, confirm that all samples are fragments of the FRO 90174 shower. Four of the fragments contain solarwind- implanted noble gases with a solar 20Ne/22Ne ratio of ~12.0, indicating that FRO 90174 is a regolith breccia. The concentrations of solar gases and cosmogenic 21Ne in the samples analyzed by us and by Welten et al. (2001) overlap with those of the FRO H-chondrites from the 1984 season, suggesting that many of these samples are also part of the large FRO 90174 chondrite shower. The cosmogenic 21Ne concentrations in FRO 90174 show no simple correlation with 10Be and 26Al activities. We found 21Ne excesses between 0.3-1.1 x 10^(-8) cm3 STP/g in 6 of the 17 samples. Since excess 21Ne and trapped solar gases are not homogeneously distributed, i.e., we found in one fragment aliquots with and without excess 21Ne and solar 20Ne, we conclude that excess 21Ne is due to GCR irradiation of the regolith before compaction of the FRO 90174 object. Therefore, the chondrite shower FRO 90174 did not simply experience an exposure history, but some material was already irradiated at the surface of an asteroid leading to excess 21Ne. This excess 21Ne is correlated to implanted solar gases, clearly indicating that both processes occurred on the regolith.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2009.tb00718.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 44, Number 1 (2009)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.