Show simple item record

dc.contributor.authorBurchell, M. J.
dc.contributor.authorFoster, N. J.
dc.contributor.authorOrmond-Prout, J.
dc.contributor.authorDupin, D.
dc.contributor.authorArmes, S. P.
dc.date.accessioned2021-02-12T22:53:53Z
dc.date.available2021-02-12T22:53:53Z
dc.date.issued2009-01-01
dc.identifier.citationBurchell, M. J., Foster, N. J., Ormond‐Prout, J., Dupin, D., & Armes, S. P. (2009). Extent of thermal ablation suffered by model organic microparticles during aerogel capture at hypervelocities. Meteoritics & Planetary Science, 44(10), 1407-1419.
dc.identifier.issn1945-5100
dc.identifier.doi10.1111/j.1945-5100.2009.tb01182.x
dc.identifier.urihttp://hdl.handle.net/10150/656617
dc.description.abstractNew model organic microparticles are used to assess the thermal ablation that occurs during aerogel capture at speeds from 1 to 6 km s^(-1). Commercial polystyrene particles (20 m diameter) were coated with an ultrathin 20 nm overlayer of an organic conducting polymer, polypyrrole. This overlayer comprises only 0.8% by mass of the projectile but has a very strong Raman signature, hence its survival or destruction is a sensitive measure of the extent of chemical degradation suffered. After aerogel capture, microparticles were located via optical microscopy and their composition was analyzed in situ using Raman microscopy. The ultrathin polypyrrole overlayer survived essentially intact for impacts at ~1 km s^(-1), but significant surface carbonization was found at 2 km s^(-1), and major particle mass loss at greater than or equal to 3 km s^(-1). Particles impacting at ~6.1 km s^(-1) (the speed at which cometary dust was collected in the NASA Stardust mission) were reduced to approximately half their original diameter during aerogel capture (i.e., a mass loss of 84%). Thus significant thermal ablation occurs at speeds above a few km s^(-1). This suggests that during the Stardust mission the thermal history of the terminal dust grains during capture in aerogel may be sufficient to cause significant processing or loss of organic materials. Further, while Raman D and G bands of carbon can be obtained from captured grains, they may well reflect the thermal processing during capture rather than the pre-impact particles thermal history.
dc.language.isoen
dc.publisherThe Meteoritical Society
dc.relation.urlhttps://meteoritical.org/
dc.rightsCopyright © The Meteoritical Society
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectstardust space missions
dc.subjectimpact processes
dc.subjectorganic compounds
dc.subjectshock heating
dc.titleExtent of thermal ablation suffered by model organic microparticles during aerogel capture at hypervelocities
dc.typeArticle
dc.typetext
dc.identifier.journalMeteoritics & Planetary Science
dc.description.collectioninformationThe Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact lbry-journals@email.arizona.edu for further information.
dc.eprint.versionFinal published version
dc.description.admin-noteMigrated from OJS platform February 2021
dc.source.volume44
dc.source.issue10
dc.source.beginpage1407
dc.source.endpage1419
refterms.dateFOA2021-02-12T22:53:53Z


Files in this item

Thumbnail
Name:
15777-18130-1-PB.pdf
Size:
3.383Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record