• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 44 (2009)
    • Meteoritics & Planetary Science, Volume 44, Number 10 (2009)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 44 (2009)
    • Meteoritics & Planetary Science, Volume 44, Number 10 (2009)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A TEM study of four particles extracted from the Stardust track 80

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    15784-18137-1-PB.pdf
    Size:
    6.026Mb
    Format:
    PDF
    Download
    Author
    Stodolna, J.
    Jacob, D.
    Leroux, H.
    Issue Date
    2009-01-01
    Keywords
    comets
    Transmission electron microscopy (TEM)
    81P/Wild2
    
    Metadata
    Show full item record
    Citation
    Stodolna, J., Jacob, D., & Leroux, H. (2009). A TEM study of four particles extracted from the Stardust track 80. Meteoritics & Planetary Science, 44(10), 1511-1518.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656624
    DOI
    10.1111/j.1945-5100.2009.tb01189.x
    Additional Links
    https://meteoritical.org/
    Abstract
    Four particles extracted from track 80 at different penetration depths have been studied by analytical transmission electron microscopy (ATEM). Regardless of their positions within the track, the samples present a comparable microstructure made of a silica rich glassy matrix embedding a large number of small Fe-Ni-S inclusions and vesicles. This microstructure is typical of strongly thermally modified particles that were heated and melted during the hypervelocity impact into the aerogel. X-ray intensity maps show that the particles were made of Mg-rich silicates (typically 200 nm in diameter) cemented by a fine-grained matrix enriched in iron sulfide. Bulk compositions of the four particles suggest that the captured dust particle was an aggregate of grains with various iron sulfide fraction and that no extending chemical mixing in the bulb occurred during the deceleration. The bulk S/Fe ratios of the four samples are close to CI and far from the chondritic meteorites from the asteroidal belt, suggesting that the studied particles are compatible with chondritic-porous interplanetary dust particles or with material coming from a large heliocentric distance for escaping the S depletion.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2009.tb01189.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 44, Number 10 (2009)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.