• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 7-8 (2007)
    • View Item
    •   Home
    • Journals and Magazines
    • Meteoritics & Planetary Science
    • Meteoritics & Planetary Science, Volume 42 (2007)
    • Meteoritics & Planetary Science, Volume 42, Number 7-8 (2007)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Titanium isotopic compositions of well-characterized silicon carbide grains from Orgueil (CI): Implications for s-process nucleosynthesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_meteoritics_v42_n7-8_1055_ ...
    Size:
    2.661Mb
    Format:
    PDF
    Download
    Author
    Huss, G. R.
    Smith, J. B.
    Issue Date
    2007-01-01
    Keywords
    Nucleosynthesis
    presolar grains
    Silicon carbide
    isotope anomaly
    
    Metadata
    Show full item record
    Citation
    Huss, G. R., & Smith, J. B. (2007). Titanium isotopic compositions of well-characterized silicon carbide grains from Orgueil (CI): Implications for s-process nucleosynthesis. Meteoritics & Planetary Science, 42(7-8), 1055-1075.
    Publisher
    The Meteoritical Society
    Journal
    Meteoritics & Planetary Science
    URI
    http://hdl.handle.net/10150/656716
    DOI
    10.1111/j.1945-5100.2007.tb00561.x
    Additional Links
    https://meteoritical.org/
    Abstract
    We have measured the titanium isotopic compositions of 23 silicon carbide grains from the Orgueil (CI) carbonaceous chondrites for which isotopic compositions of silicon, carbon, and nitrogen and aluminum-magnesium systematics had been measured previously. Using the 16 mostprecise measurements, we estimate the relative contributions of stellar nucleosynthesis during the asymptotic giant branch (AGB) phase and the initial compositions of the parent stars to the compositions of the grains. To do this, we compare our data to the results of several published stellar models that employ different values for some important parameters. Our analysis confirms that s-process synthesis during the AGB phase only slightly modified the titanium compositions in the envelopes of the stars where mainstream silicon carbide grains formed, as it did for silicon. Our analysis suggests that the parent stars of the >1 micrometer silicon carbide grains that we measured were generally somewhat more massive than the Sun (2-3 M(sun)) and had metallicities similar to or slightly higher than solar. Here we differ slightly from results of previous studies, which indicated masses at the lower end of the range 1.5-3 M(sun) and metallicities near solar. We also conclude that models using a standard 13C pocket, which produces a good match for the main component of s-process elements in the solar system, overestimate the contribution of the 13C pocket to s-process nucleosynthesis of titanium found in silicon carbide grains. Although previous studies have suggested that the solar system has a significantly different titanium isotopic composition than the parent stars of silicon carbide grains, we find no compelling evidence that the Sun falls off of the array defined by those stars. We also conclude that the Sun does lie on the low-metallicity end of the silicon and titanium arrays defined by mainstream silicon carbide grains.
    Type
    Article
    text
    Language
    en
    ISSN
    1945-5100
    ae974a485f413a2113503eed53cd6c53
    10.1111/j.1945-5100.2007.tb00561.x
    Scopus Count
    Collections
    Meteoritics & Planetary Science, Volume 42, Number 7-8 (2007)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.