• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using Big-Data to Develop Catchment-Scale Hydrological Models for Chile

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_18554_sip1_m.pdf
    Size:
    5.500Mb
    Format:
    PDF
    Download
    Author
    De la Fuente, Luis Andrés
    Issue Date
    2021
    Keywords
    daily
    Machine Learning
    model
    prediction
    process-based model
    Streamflow
    Advisor
    Gupta, Hoshin V.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Streamflow prediction is very important to the economic and human development of a country. For example, it is used in the quantification and distribution of the water resource, and in the design of new hydraulic infrastructure, risk quantification, rapid response to mitigate flooding, etc. For this reason, learning how to improve our estimation of streamflow must be one of the aspirations of any surface hydrologist. Chile has an extensive stream gauge network, which is part of the new CAMELS-CL database. This database also includes data about several static attributes for each of the 516 catchments represented within it, which provides us with a valuable database that can be used to develop process-based and data-based models with the ultimate goal of implementing a national hydrological model.Recent studies have shown that Machine Learning (ML) can provide better predictive performance than traditional process-based (PB) models. In hydrology, Kratzert et al. (2019), Nearing et al. (2020a), and others have reported similar results when comparing an ML-based model with the extensively studied and calibrated SAC-SMA and other benchmark models over the USA. This finding creates the opportunity to bridge the gap between ML-based and PB models by transferring insights gained via the process of developing a ML model into improvements of the PB model(s). With this in mind, we implemented the GR4J process-based catchment model as a baseline, and two ML-based models, Random Forest (RF) decision tree approach, and the Long-Short Term Memory (LSTM) dynamic state variable approach, on 322 selected Chilean catchments. The three models were compared in detail to examine their strengths and weakness, and to determine the best candidate for a national model. Our results showed that none of the three models performed “best” across the entire country, and all of them had problems in the north of Chile, indicating that additional informative attributes and variables must be incorporated into the database. Furthermore, the models showed complementary performance abilities, which opens the opportunity to develop an ensemble of the three or more models in the future to merge their respective strengths. Overall, the model performance results were found to be related to the meteorological forcings, but also with certain climatic conditions such as aridity, which emerges as an important variable to characterize the behaviors of different catchments.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.