• Bridging the Gap with Subfossil Douglas-Fir at Mesa Verde, Colorado

      Stahle, D.W.; Edmondson, J.R.; Burns, J.N.; Stahle, D.K.; Burnette, D.J.; Kvamme, E.; Lequesne, C.; Therrell, M.D. (Tree Ring Society, 2015-07)
      Old Rocky Mountain Douglas-fir (Pseudotsuga menziesii) trees and remnant "subfossil" logs have been found on the outcrop of a mafic igneous intrusion above the Mancos River Valley near Mesa Verde National Park. These trees and logs have been used to develop earlywood (EW), latewood (LW), and total ring width (TRW) chronologies dating from AD 722-2011. The new chronologies include good series replication during the former chronological "gap" from AD 1250 to 1400, which was so problematic for the initial development of the "Central Pueblo" chronology by A. E. Douglass. Discrete reconstructions of the cool-season (September-May) and early warm-season (June-July) moisture balance for Mesa Verde have been derived from the EW and adjusted LW width chronologies from the Mancos Valley. Cool-season drought is estimated to have been more severe and sustained than early warm-season conditions during the "Great Drought" of the late-13th Century when southwestern Colorado was depopulated. The combined archaeological, subfossil, and living tree chronologies of EW, LW, and TRW for the Mancos River and Mesa Verde Douglas-fir now date from AD 480-2011. Copyright © 2015 by The Tree-Ring Society.
    • Dendroecological Methods for Reconstructing High-Severity Fire in Pine-Oak Forests

      Guiterman, C.H.; Margolis, E.Q.; Swetnam, T.W. (Tree Ring Society, 2015-07)
      Recent high-severity fires in pine-oak forests of the southwestern United States are creating shrubfields that may persist for decades to centuries. Shrubfields embedded in conifer forests that pre-date documentary records are potential evidence of older high-severity fire patches, and may therefore provide insights into the occurrence and extent of past high-severity fires and vegetation type conversion dynamics. In this paper we test whether dendroecological evidence can be used to reconstruct a high-severity, type-changing fire of known date in a ponderosa pine-dominated (Pinus ponderosa var scopulorum Engelm.) forest. Dendroecological evidence included (1) Gambel oak (Quercus gambelii, Nutt.) regeneration dates, (2) fire scars, (3) death dates, and (4) tree-ring growth changes. We reconstructed the historical fire regime and fire-climate relationship to evaluate whether the recent high-severity fire was driven by climate or fuel build-up related to a fire regime disruption. The dendroecological evidence correctly dated the year (1993) and season (spring) of the documented fire, and synchronous oak re-sprouts provided a means to estimate the minimum high-severity patch size. The historical fire regime at the site (1625-1871) consisted of frequent, low-severity fires occurring in dry years preceded by wet years. Fires stopped in 1871, coincident with increased regional livestock grazing. The 1993 fire occurred under relatively cool and wet conditions, but followed a 122-year fire-free interval (four times the maximum historical interval). Multiple lines of evidence suggest that increased fuel loads from fire exclusion, combined with high winds, were primary drivers of the high-severity fire. The dendroecological approach we outline can be applied to reconstruct high-severity fire across a range of conifer-shrubland ecosystems. Copyright © 2015 by The Tree-Ring Society.
    • Reconstructing Evaporation from Pine Tree Rings in Northern Mexico

      Pompa-García, M.; Camarero, J.J. (Tree Ring Society, 2015-07)
      Here we reconstructed evaporation using tree-ring width variability. Drought variability and its effects on forest growth have been mainly characterized by changes in precipitation and temperatures, whereas atmospheric drought and evaporation rates have been little investigated. The area of study corresponds to northern Mexico, a region where water resources are increasingly limited. We used correlation analyses to identify the months in which evaporation is most strongly related to tree-ring width series. Then, we built a linear regression model to predict seasonal winter-to-spring evaporation as a function of ring-width indices. Correlation analyses showed that the radial growth of P. cooperi decreased in response to reduced water availability and increased evaporation during the winter prior to the growing season, and also during spring and the early summer of the year of tree-ring formation. Pine growth mainly benefitted from wet and cool conditions from winter to early spring. Linear regression models used in reconstruction were statistically robust and allowed reconstructing January-to-April evaporation for the period 1900-2010. Our study contributes to a better understanding of historical changes in evaporation in northern Mexico and, most importantly, it also emphasizes how atmospheric moisture demand is linked to tree growth. Copyright © 2015 by The Tree-Ring Society.