• Herder observations of rangeland change in Mongolia: Indicators, causes, and application to community-based management

      Bruegger, R. A.; Jigjsuren, O.; Fernández-Giménez, M. E. (Society for Range Management, 2014-03)
      Local observations of ecological change are important in developing tools for rangeland management and filling in gaps where quantitative data are lacking. Traditional ecological knowledge (TEK) is a potential source of information that can complement scientific knowledge. It may also allow policy makers and scientists to suggest responses that will be locally relevant, and therefore effective on the ground. We conducted 40 surveys with the use of closed-ended questionnaires followed by open-ended qualitative questions with herders in two soum (administrative districts), located in the steppe and forest steppe of Mongolia. Respondents were asked about their observations of rangeland change and its causes in the last 20 yr. Across the study areas, a strong majority (75%) of all herders reported that rangeland condition was much worse than 20 yr ago. Herders in both soum reported increases in undesirable plant species, declines in species richness, and the disappearance or decreasing abundance of specific desirable plant species. Comparing the two soum, more herders in the forest-steppe site (90%) reported that rangeland condition was much worse than reported by herders in the steppe site (65%). In qualitative responses to open-ended questions, herders identified multiple indicators of and causes behind degradation, including very heavy grazing. In a large, sparsely populated country like Mongolia, herders' observations may serve as an early warning of rangeland change, provide insights into causes of change, and identify key uncertainties. Community-based rangeland management organizations (CBRMs) could help to translate herder observations into action by participating in formal monitoring based on herder-identified indicators and implementing changes in management in response to observed change. However, herders cannot address all issues that might be contributing to troubling ecological trends without higher-level policy coordinating rangeland monitoring and herder movements at regional and national scales. © 2014 The Society for Range Management.
    • Long-term vegetation change provides evidence for alternate states in silver sagebrush

      Kachergis, E.; Rocca, M. E.; Fernández-Giménez, M. E. (Society for Range Management, 2014-03)
      A key goal in land management is to prevent ecosystem shifts that affect human well-being. Like other types of sagebrush shrublands, large areas dominated by the common but little-studied mountain silver sagebrush may have shifted to a less productive shrub-dominated alternate state under heavy livestock grazing in the 19th century. The goals of this study are to 1) describe long-term vegetation change in a silver sagebrush mountain park and 2) evaluate evidence that these changes constitute alternate states. We examined vegetation change over the last 57 yr in California Park, Colorado, USA, using monitoring data from 15 permanent transects at six sites. We analyzed change in species composition over time and related it to management and climatic drivers using nonmetric multidimensional scaling. We found that management practices influenced species composition. Spraying herbicides resulted in decreases of sagebrush and a dominant, unpalatable forb (Wyethia amplexicaulis), but sagebrush recovered. Spraying also triggered a temporary increase in native palatable grasses and forbs. Native grasses have since decreased again, coinciding with increases in the cattle stocking rate and elk population. The nonnative pasture grass Phleum pratense has increased to become one of the dominant grasses in 2010. Sagebrush and herbaceous understory dynamics were not consistent with a shrub-dominated alternate state: changes were gradual and not persistent. However, historic Wyethia dominance and the widespread increase in the nonnative grass Phleum were persistent and may represent alternate states. We used these findings to update a state-and-transition model of high-elevation silver sagebrush shrubland dynamics for land management decision making. Our analysis differentiated gradual, nonpersistent changes from potentially irreversible changes, as is necessary for identifying alternate states that are important for land management and ecosystem function. The gradual but persistent increase in the nonnative grass Phleum reinforces others' observations that even incremental changes may lead to irreversible shifts. © 2014 The Society for Range Management.