• A Synopsis of Short-Term Response to Alternative Restoration Treatments in Sagebrush-Steppe: The SageSTEP Project

      McIver, J.; Brunson, M.; Bunting, S.; Chambers, J.; Doescher, P.; Grace, J.; Hulet, A.; Johnson, D.; Knick, S.; Miller, R.; et al. (Society for Range Management, 2014-09)
      The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a "recipe" for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the best chance managers have for arresting woodland expansion and cheatgrass invasion that may accelerate in a future warming climate. © 2014 The Society for Range Management.
    • Response of Conifer-Encroached Shrublands in the Great Basin to Prescribed Fire and Mechanical Treatments

      Miller, R. F.; Ratchford, J.; Roundy, B. A.; Tausch, R. J.; Hulet, A.; Chambers, J. (Society for Range Management, 2014-09)
      In response to the recent expansion of piñon and juniper woodlands into sagebrush-steppe communities in the northern Great Basin region, numerous conifer-removal projects have been implemented, primarily to release understory vegetation at sites having a wide range of environmental conditions. Responses to these treatments have varied from successful restoration of native plant communities to complete conversion to nonnative invasive species. To evaluate the general response of understory vegetation to tree canopy removal in conifer-encroached shrublands, we set up a region-wide study that measured treatment-induced changes in understory cover and density. Eleven study sites located across four states in the Great Basin were established as statistical replicate blocks, each containing fire, mechanical, and control treatments. Different cover groups were measured prior to and during the first 3 yr following treatment. There was a general pattern of response across the wide range of site conditions. There was an immediate increase in bare ground and decrease in tall perennial grasses following the fire treatment, but both recovered by the second or third growing season after treatment. Tall perennial grass cover increased in the mechanical treatment in the second and third year, and in the fire treatment cover was higher than the control by year 3. Nonnative grass and forb cover did not increase in the fire and mechanical treatments in the first year but increased in the second and third years. Perennial forb cover increased in both the fire and mechanical treatments. The recovery of herbaceous cover groups was from increased growth of residual vegetation, not density. Sagebrush declined in the fire treatment, but seedling density increased in both treatments. Biological soil crust declined in the fire treatment, with no indications of recovery. Differences in plant response that occurred between mechanical and fire treatments should be considered when selecting management options. © 2014 The Society for Range Management.