• Region-Wide Ecological Responses of Arid Wyoming Big Sagebrush Communities to Fuel Treatments

      Pyke, D. A.; Shaff, S. E.; Lindgren, A. I.; Schupp, E. W.; Doescher, P. S.; Chambers, J. C.; Burnham, J. S.; Huso, M. M. (Society for Range Management, 2014-09)
      If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152-381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants >2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences on plant communities. © 2014 The Society for Range Management.
    • Short-Term Butterfly Response to Sagebrush Steppe Restoration Treatments

      McIver, J.; Macke, E. (Society for Range Management, 2014-09)
      As part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), butterflies were surveyed pretreatment and up to 4 yr posttreatment at 16 widely distributed sagebrush steppe sites in the interior West. Butterfly populations and communities were analyzed in response to treatments (prescribed fire, mechanical, herbicide) designed to restore sagebrush steppe lands encroached by piñon-juniper woodlands (Pinus, Juniperus spp.) and invaded by cheatgrass (Bromus tectorum). Butterflies exhibited distinct regional patterns of species composition, with communities showing marked variability among sites. Some variation was explained by the plant community, with Mantel's test indicating that ordinations of butterfly and plant communities were closely similar for both woodland sites and lower-elevation treeless (sage-cheat) sites. At woodland sites, responses to stand replacement prescribed fire, clear-cutting, and tree mastication treatments applied to 10-20-ha plots were subtle: 1) no changes were observed in community structure; 2) Melissa blues (Plebejus melissa) and sulfurs (Colias spp.) increased in abundance after either burning or mechanical treatments, possibly due to increase in larval and nectar food resource, respectively; and 3) the juniper hairstreak (Callophrys gryneus) declined at sites at which it was initially present, probably due to removal of its larval food source. At sage-cheat sites, after prescribed fire was applied to 25-75-ha plots, we observed 1) an increase in species richness and abundance at most sites, possibly due to increased nectar resources for adults, and 2) an increase in the abundance of skippers (Hesperiidae) and small white butterflies. Linkages between woody species removal, the release of herbaceous vegetation, and butterfly response to treatments demonstrate the importance of monitoring an array of ecosystem components in order to document the extent to which management practices cause unintended consequences.
    • Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems

      Rau, B. M.; Chambers, J. C.; Pyke, D. A.; Roundy, B. A.; Schupp, E. W.; Doescher, P.; Caldwell, T. G. (Society for Range Management, 2014-09)
      Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3-, H2PO4-, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4- was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that demonstrates how soil resources potentially influence the outcome of management treatments. © 2014 The Society for Range Management.