• Ecological Scale of Bird Community Response to Piñon-Juniper Removal

      Knick, S. T.; Hanser, S. E.; Leu, M. (Society for Range Management, 2014-09)
      Piñon (Pinus spp.) and juniper (Juniperus spp.) removal is a common management approach to restore sagebrush (Artemisia spp.) vegetation in areas experiencing woodland expansion. Because many management treatments are conducted to benefit sagebrush-obligate birds, we surveyed bird communities to assess treatment effectiveness in establishing sagebrush bird communities at study sites in Utah, Nevada, Idaho, and Oregon. Our analyses included data from 1 or 2 yr prior to prescribed fire or mechanical treatment and 3 to 5 yr posttreatment. We used detrended correspondence analysis to 1) identify primary patterns of bird communities surveyed from 2006 to 2011 at point transects, 2) estimate ecological scale of change needed to achieve treatment objectives from the relative dissimilarity of survey points to the ordination region delineating sagebrush bird communities, and 3) measure changes in pre- and posttreatment bird communities. Birds associated with sagebrush, woodlands, and ecotones were detected on our surveys; increased dissimilarity of survey points to the sagebrush bird community was characterized by a gradient of increased juniper and decreased sagebrush cover. Prescribed fires burned between 30% and 97% of our bird survey points. However, from 6% to 24% cover of piñon-juniper still remained posttreatment on the four treatment plots. We measured only slight changes in bird communities, which responded primarily to current vegetation rather than relative amount of change from pretreatment vegetation structure. Bird communities at survey points located at greater ecological scales from the sagebrush bird community changed least and will require more significant impact to achieve changes. Sagebrush bird communities were established at only two survey points, which were adjacent to a larger sagebrush landscape and following almost complete juniper removal by mechanical treatment. Our results indicate that management treatments that leave residual woodland cover and are not adjacent to extensive sagebrush stands are unlikely to establish sagebrush birds. © 2014 The Society for Range Management.
    • Piñon-Juniper Reduction Increases Soil Water Availability of the Resource Growth Pool

      Roundy, B. A.; Young, K.; Cline, N.; Hulet, A.; Miller, R. F.; Tausch, R. J.; Chambers, J. C.; Rau, B. (Society for Range Management, 2014-09)
      Managers reduce piñon (Pinus spp.) and juniper (Juniperus spp.) trees that are encroaching on sagebrush (Artemisia spp.) communities to lower fuel loads and increase cover of desirable understory species. All plant species in these communities depend on soil water held at >-1.5 MPa matric potential in the upper 0.3 m of soil for nutrient diffusion to roots and major growth in spring (resource growth pool). We measured soil water matric potentials and temperatures using gypsum blocks and thermocouples buried at 0.01-0.3 m on tree, shrub, and interspace microsites to characterize the seasonal soil climate of 13 tree-encroached sites across the Great Basin. We also tested the effects of initial tree infilling phase and tree control treatments of prescribed fire, tree cutting, and tree shredding on time of available water and soil temperature of the resource growth pool on nine sites. Both prescribed fire and mechanical tree reduction similarly increased the time that soil water was available (matric potential >-1.5 MPa) in spring, but this increase was greatest (up to 26 d) when treatments were applied at high tree dominance. As plant cover increased with time since treatment, the additional time of available water decreased. However, even in the fourth year after treatment, available water was 8.6 d and 18 d longer on treatments applied at mid and high tree dominance compared to untreated plots, indicating ongoing water availability to support continued increases in residual plants or annual invaders in the future. To increase resistance to invasive annual grasses managers should either treat at lower or mid tree dominance when there is still high cover of desirable residual vegetation or seed desirable species to use increased resources from tree reduction. This strategy is especially critical on warmer sites, which have high climate suitability to invasive species such as cheatgrass (Bromus tectorum L.). © 2014 The Society for Range Management.
    • Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments

      Chambers, J. C.; Miller, R. F.; Board, D. I.; Pyke, D. A.; Roundy, B. A.; Grace, J. B.; Schupp, E. W.; Tausch, R. J. (Society for Range Management, 2014-09)
      In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options. © 2014 The Society for Range Management.
    • Short-Term Butterfly Response to Sagebrush Steppe Restoration Treatments

      McIver, J.; Macke, E. (Society for Range Management, 2014-09)
      As part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), butterflies were surveyed pretreatment and up to 4 yr posttreatment at 16 widely distributed sagebrush steppe sites in the interior West. Butterfly populations and communities were analyzed in response to treatments (prescribed fire, mechanical, herbicide) designed to restore sagebrush steppe lands encroached by piñon-juniper woodlands (Pinus, Juniperus spp.) and invaded by cheatgrass (Bromus tectorum). Butterflies exhibited distinct regional patterns of species composition, with communities showing marked variability among sites. Some variation was explained by the plant community, with Mantel's test indicating that ordinations of butterfly and plant communities were closely similar for both woodland sites and lower-elevation treeless (sage-cheat) sites. At woodland sites, responses to stand replacement prescribed fire, clear-cutting, and tree mastication treatments applied to 10-20-ha plots were subtle: 1) no changes were observed in community structure; 2) Melissa blues (Plebejus melissa) and sulfurs (Colias spp.) increased in abundance after either burning or mechanical treatments, possibly due to increase in larval and nectar food resource, respectively; and 3) the juniper hairstreak (Callophrys gryneus) declined at sites at which it was initially present, probably due to removal of its larval food source. At sage-cheat sites, after prescribed fire was applied to 25-75-ha plots, we observed 1) an increase in species richness and abundance at most sites, possibly due to increased nectar resources for adults, and 2) an increase in the abundance of skippers (Hesperiidae) and small white butterflies. Linkages between woody species removal, the release of herbaceous vegetation, and butterfly response to treatments demonstrate the importance of monitoring an array of ecosystem components in order to document the extent to which management practices cause unintended consequences.
    • Short-Term Effects of Tree Removal on Infiltration, Runoff, and Erosion in Woodland-Encroached Sagebrush Steppe

      Pierson, F. B.; Williams, C. J.; Kormos, P. R.; Al-Hamdan, O. Z. (Society for Range Management, 2014-09)
      Land owners and managers across the western United States are increasingly searching for methods to evaluate and mitigate the effects of woodland encroachment on sagebrush steppe ecosystems. We used small-plot scale (0.5 m2) rainfall simulations and measures of vegetation, ground cover, and soils to investigate woodland response to tree removal (prescribed fire and mastication) at two late-succession woodlands. We also evaluated the effects of burning on soil water repellency and effectiveness of aggregate stability indices to detect changes in erosion potential. Plots were located in interspaces between tree and shrub canopies and on undercanopy tree and shrub microsites. Erosion from untreated interspaces in the two woodlands differed more than 6-fold, and erosion responses to prescribed burning differed by woodland site. High-intensity rainfall (102 mm·h-1) on the less erodible woodland generated amplified runoff and erosion from tree microsites postfire, but erosion (45-75 g·m-2) was minor relative to the 3-13-fold fire-induced increase in erosion on tree microsites at the highly erodible site (240-295 g·m-2). Burning the highly erodible woodland also generated a 7-fold increase in erosion from shrub microsites (220-230 g·m-2) and 280-350 g·m-2 erosion from interspaces. High levels of runoff (40-45 mm) and soil erosion (230-275 g·m-2) on unburned interspaces at the more erodible site were reduced 4-5-fold (10 mm and 50 g·m-2) by masticated tree material. The results demonstrate that similarly degraded conditions at woodland-encroached sites may elicit differing hydrologic and erosion responses to treatment and that treatment decisions should consider inherent site-specific erodibility when evaluating tree-removal alternatives. Strong soil water repellency was detected from 0 cm to 3 cm soil depth underneath unburned tree canopies at both woodlands and its strength was not altered by burning. However, fire removal of litter exacerbated repellency effects on infiltration, runoff generation, and erosion. The aggregate stability index method detected differences in relative soil stability between areas underneath trees and in the intercanopy at both sites, but failed to provide any indication of between-site differences in erodibility or the effects of burning on soil erosion potential. © 2014 The Society for Range Management.
    • Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems

      Rau, B. M.; Chambers, J. C.; Pyke, D. A.; Roundy, B. A.; Schupp, E. W.; Doescher, P.; Caldwell, T. G. (Society for Range Management, 2014-09)
      Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3-, H2PO4-, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4- was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that demonstrates how soil resources potentially influence the outcome of management treatments. © 2014 The Society for Range Management.
    • Understory Cover Responses to Piñon-Juniper Treatments Across Tree Dominance Gradients in the Great Basin

      Roundy, B. A.; Miller, R. F.; Tausch, R. J.; Young, K.; Hulet, A.; Rau, B.; Jessop, B.; Chambers, J. C.; Eggett, D. (Society for Range Management, 2014-09)
      Piñon (Pinus spp.) and juniper (Juniperus spp.) trees are reduced to restore native vegetation and avoid severe fires where they have expanded into sagebrush (Artemisia tridentata Nutt.) communities. However, what phase of tree infilling should treatments target to retain desirable understory cover and avoid weed dominance? Prescribed fire and tree felling were applied to 8-20-ha treatment plots at 11 sites across the Great Basin with a tree-shredding treatment also applied to four Utah sites. Treatments were applied across a tree infilling gradient as quantified by a covariate tree dominance index (TDI=tree cover/tree+shrub+tall perennial grass cover). Mixed model analysis of covariance indicated that treatment×covariate interactions were significant (P<0.05) for most vegetation functional groups 3 yr after treatment. Shrub cover was most reduced with fire at any TDI or by mechanical treatment after infilling resulted in over 50% shrub cover loss (TDI>0.4). Fire increased cheatgrass (Bromus tectorum L.) cover by an average of 4.2% for all values of TDI. Cutting or shredding trees generally produced similar responses and increased total perennial herbaceous and cheatgrass cover by an average of 10.2% and 3.8%, at TDIs ≥0.35 and ≥0.45. Cheatgrass cover estimated across the region was <6% after treatment, but two warmer sites had high cheatgrass cover before (19.2% and 27.2%) and after tree reduction (26.6% and 50.4%). Fuel control treatments are viable management options for increasing understory cover across a range of sites and tree cover gradients, but should be accompanied by revegetation on warmer sites with depleted understories where cheatgrass is highly adapted. Shrub and perennial herbaceous cover can be maintained by mechanically treating at lower TDI. Perennial herbaceous cover is key for avoiding biotic and abiotic thresholds in this system through resisting weed dominance and erosion. © 2014 The Society for Range Management.