Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific
Name:
JournalFishBiology-2020.14656.pdf
Size:
1.515Mb
Format:
PDF
Description:
Final Accepted Manuscript
Author
Reguera‐Rouzaud, NicoleDíaz‐Viloria, Noé
Pérez‐Enríquez, Ricardo
Espino‐Barr, Elaine
Rivera‐Lucero, Mailin Isabel
Munguía‐Vega, Adrián
Affiliation
Conservation Genetics Laboratory & Desert Laboratory on Tumamoc Hill, University of ArizonaIssue Date
2020-12-22Keywords
Gulf of Californiahabitat discontinuity
isolation by distance
larval dispersal
microsatellites
Metadata
Show full item recordPublisher
Blackwell Publishing LtdCitation
Reguera‐Rouzaud, N., Díaz‐Viloria, N., Pérez‐Enríquez, R., Espino‐Barr, E., Rivera‐Lucero, M. I., & Munguía‐Vega, A. (2020). Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical Eastern Pacific. Journal of Fish Biology.Journal
Journal of Fish BiologyRights
© 2020 Fisheries Society of the British Isles.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The tropical eastern Pacific (TEP) is a highly dynamic region and a model system to study how habitat discontinuities affect the distribution of shorefishes, particularly for species that display ontogenetic habitat shifts, including snappers (Lutjanidae). To evaluate the genetic structure of the Pacific red snapper (Lutjanus peru) and the yellow snapper (Lutjanus argentiventris) throughout their distribution range along the TEP, 13 and 11 microsatellite loci were analysed, respectively. The genetic diversity of L. peru (N = 446) and L. argentiventris (N = 170) was evaluated in 10 and 5 localities, respectively, showing slightly higher but non-significant values in the Gulf of California for both species. The genetic structure analysis identified the presence of significant genetic structure in both species, but the locations of the identified barriers for the gene flow differed between species. The principal driver for the genetic structure at large scales >2500 km was isolation by distance. At smaller scales (<250 km), the habitat discontinuity for juveniles and adults and the environmental differences throughout the distribution range represented potential barriers to gene flow between populations for both species. © 2020 Fisheries Society of the British IslesNote
12 month embargo; first published online 22 December 2020ISSN
0022-1112EISSN
1095-8649Version
Final accepted manuscriptSponsors
Consejo Nacional de Ciencia y Tecnologíaae974a485f413a2113503eed53cd6c53
10.1111/jfb.14656