Show simple item record

dc.contributor.authorBroxton, Patrick D.
dc.contributor.authorvan Leeuwen, Willem J. D.
dc.date.accessioned2021-04-02T19:00:17Z
dc.date.available2021-04-02T19:00:17Z
dc.date.issued2020-07
dc.identifier.citationBroxton, P. D., & van Leeuwen, W. J. D. (2020). Structure from Motion of Multi-Angle RPAS Imagery Complements Larger-Scale Airborne Lidar Data for Cost-Effective Snow Monitoring in Mountain Forests. Remote Sensing, 12(14), 2311. doi:10.3390/rs12142311
dc.identifier.issn2072-4292
dc.identifier.doi10.3390/rs12142311
dc.identifier.urihttp://hdl.handle.net/10150/657346
dc.description.abstractSnowmelt from mountain forests is critically important for water resources and hydropower generation. More than 75% of surface water supply originates as snowmelt in mountainous regions, such as the western U.S. Remote sensing has the potential to measure snowpack in these areas accurately. In this research, we combine light detection and ranging (lidar) from crewed aircraft (currently, the most reliable way of measuring snow depth in mountain forests) and structure from motion (SfM) remotely piloted aircraft systems (RPAS) for cost-effective multi-temporal monitoring of snowpack in mountain forests. In sparsely forested areas, both technologies give similar snow depth maps, with a comparable agreement with ground-based snow depth observations (RMSE similar to 10 cm). In densely forested areas, airborne lidar is better able to represent snow depth than RPAS-SfM (RMSE similar to 10 cm vs similar to 10-20 cm). In addition, we find the relationship between RPAS-SfM and previous lidar snow depth data can be used to estimate snow depth conditions outside of relatively small RPAS-SfM monitoring plots, with RMSE's between these observed and estimated snow depths on the order of 10-15 cm for the larger lidar coverages. This suggests that when a single airborne lidar snow survey exists, RPAS-SfM may provide useful multi-temporal snow monitoring that can estimate basin-scale snowpack, at a much lower cost than multiple airborne lidar surveys. Doing so requires a pre-existing mid-winter or peak-snowpack airborne lidar snow survey, and subsequent well-designed paired SfM and field snow surveys that accurately capture substantial snow depth variability.
dc.language.isoen
dc.publisherMDPI
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectsnow
dc.subjectremotely piloted aircraft systems
dc.subjectstructure from motion
dc.subjectlidar
dc.subjectforests
dc.titleStructure from Motion of Multi-Angle RPAS Imagery Complements Larger-Scale Airborne Lidar Data for Cost-Effective Snow Monitoring in Mountain Forests
dc.typeArticle
dc.typetext
dc.identifier.eissn2072-4292
dc.contributor.departmentUniv Arizona, Sch Nat Resources & Environm
dc.contributor.departmentUniv Arizona, Sch Geog & Dev
dc.identifier.journalREMOTE SENSING
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleREMOTE SENSING
refterms.dateFOA2021-04-02T19:00:17Z


Files in this item

Thumbnail
Name:
remotesensing-12-02311-v2.pdf
Size:
9.219Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).