A community-maintained standard library of population genetic models
Author
Adrion, Jeffrey R.Cole, Christopher B.
Dukler, Noah
Galloway, Jared G.
Gladstein, Ariella L.
Gower, Graham
Kyriazis, Christopher C.
Ragsdale, Aaron P.
Tsambos, Georgia
Baumdicker, Franz
Carlson, Jedidiah
Cartwright, Reed A.
Durvasula, Arun
Gronau, Ilan
Kim, Bernard Y.
McKenzie, Patrick
Messer, Philipp W.
Noskova, Ekaterina
Ortega-Del Vecchyo, Diego
Racimo, Fernando
Struck, Travis J.
Gravel, Simon
Gutenkunst, Ryan N.
Lohmueller, Kirk E.
Ralph, Peter L.
Schrider, Daniel R.
Siepel, Adam
Kelleher, Jerome
Kern, Andrew D.
Affiliation
Univ Arizona, Dept Mol & Cellular BiolIssue Date
2020-06
Metadata
Show full item recordPublisher
ELIFE SCIENCES PUBLICATIONS LTDCitation
Adrion, J. R., Cole, C. B., Dukler, N., Galloway, J. G., Gladstein, A. L., Gower, G., ... & Kern, A. D. (2020). A community-maintained standard library of population genetic models. Elife, 9, e54967.Journal
ELIFERights
Copyright © Adrion et al. This article is distributed under the terms of the Creative Commons Attribution License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.Note
Open access journalISSN
2050-084XPubMed ID
32573438Version
Final published versionae974a485f413a2113503eed53cd6c53
10.7554/eLife.54967
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © Adrion et al. This article is distributed under the terms of the Creative Commons Attribution License.
Related articles
- Expanding the stdpopsim species catalog, and lessons learned for realistic genome simulations.
- Authors: Lauterbur ME, Cavassim MIA, Gladstein AL, Gower G, Pope NS, Tsambos G, Adrion J, Belsare S, Biddanda A, Caudill V, Cury J, Echevarria I, Haller BC, Hasan AR, Huang X, Iasi LNM, Noskova E, Obsteter J, Pavinato VAC, Pearson A, Peede D, Perez MF, Rodrigues MF, Smith CCR, Spence JP, Teterina A, Tittes S, Unneberg P, Vazquez JM, Waples RK, Wohns AW, Wong Y, Baumdicker F, Cartwright RA, Gorjanc G, Gutenkunst RN, Kelleher J, Kern AD, Ragsdale AP, Ralph PL, Schrider DR, Gronau I
- Issue date: 2023 Jun 21
- Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model.
- Authors: Mailund T, Dutheil JY, Hobolth A, Lunter G, Schierup MH
- Issue date: 2011 Mar
- Comparative and demographic analysis of orang-utan genomes.
- Authors: Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P, Mitreva M, Cook L, Delehaunty KD, Fronick C, Schmidt H, Fulton LA, Fulton RS, Nelson JO, Magrini V, Pohl C, Graves TA, Markovic C, Cree A, Dinh HH, Hume J, Kovar CL, Fowler GR, Lunter G, Meader S, Heger A, Ponting CP, Marques-Bonet T, Alkan C, Chen L, Cheng Z, Kidd JM, Eichler EE, White S, Searle S, Vilella AJ, Chen Y, Flicek P, Ma J, Raney B, Suh B, Burhans R, Herrero J, Haussler D, Faria R, Fernando O, Darré F, Farré D, Gazave E, Oliva M, Navarro A, Roberto R, Capozzi O, Archidiacono N, Della Valle G, Purgato S, Rocchi M, Konkel MK, Walker JA, Ullmer B, Batzer MA, Smit AF, Hubley R, Casola C, Schrider DR, Hahn MW, Quesada V, Puente XS, Ordoñez GR, López-Otín C, Vinar T, Brejova B, Ratan A, Harris RS, Miller W, Kosiol C, Lawson HA, Taliwal V, Martins AL, Siepel A, Roychoudhury A, Ma X, Degenhardt J, Bustamante CD, Gutenkunst RN, Mailund T, Dutheil JY, Hobolth A, Schierup MH, Ryder OA, Yoshinaga Y, de Jong PJ, Weinstock GM, Rogers J, Mardis ER, Gibbs RA, Wilson RK
- Issue date: 2011 Jan 27
- Design and evaluation of genome-wide libraries for RNA interference screens.
- Authors: Horn T, Sandmann T, Boutros M
- Issue date: 2010
- Versatile simulations of admixture and accurate local ancestry inference with mixnmatch and ancestryinfer.
- Authors: Schumer M, Powell DL, Corbett-Detig R
- Issue date: 2020 Jul

