Marine Heatwaves in China's Marginal Seas and Adjacent Offshore Waters: Past, Present, and Future
Publisher
AMER GEOPHYSICAL UNIONCitation
Yao, Y., Wang, J., Yin, J., & Zou, X. (2020). Marine Heatwaves in China's Marginal Seas and Adjacent Offshore Waters: Past, Present, and Future. Journal of Geophysical Research: Oceans, 125(3), e2019JC015801.Rights
© 2020. American Geophysical Union. All Rights Reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Under the combined impacts of natural changes and human activities, the past, current, and future marine heatwaves (MHWs) in China's marginal seas and adjacent offshore waters (CMSOW) need a comprehensive understanding. This study provides a systematic analysis of the spatiotemporal variations using daily sea surface temperature data and simulates the future trend using 12 climate models. During 1982–2018, the mean annual total days, duration, frequency, and mean intensity of the MHWs in the CMSOW increased by 20–30 days/decade, 5–9 days/decade, 1–2 decade−1, and 0.1–0.3°C/decade, respectively (p <0.01). The maximum sea surface temperature anomalies in the Bohai Sea was over 6–8°C, and the MHW's frequency, duration, and mean intensity were higher than twice the global average, which could have impacted fishery resources and occurrence of harmful algal blooms. The variations of the MHWs in the CMSOW result from the robust ocean surface warming, which is caused by increased solar radiation due to reduced cloud cover, reduced ocean heat loss from weaker wind speed, weakening but warmer Kuroshio, and strong El Niño. In the future, the areas with longer total days and duration will increase; the spatial pattern of frequency has a negative relationship with that of duration while that of mean intensity is mostly unchanged. Year 2040 is a key node for the future changes of MHW under different Representative Concentration Pathways. The trend of total days increases from fast to slow, and frequency shows an opposite trend; the duration and mean intensity rise faster after 2040.Note
6 month embargo; first published online 21 February 2020ISSN
2169-9275EISSN
2169-9291Version
Final published versionSponsors
National Natural Science Foundation of China-Yunnan Joint Fundae974a485f413a2113503eed53cd6c53
10.1029/2019jc015801