Show simple item record

dc.contributor.authorHarris, Jonathan K.
dc.contributor.authorRatcliff, Erin L.
dc.date.accessioned2021-04-17T01:35:13Z
dc.date.available2021-04-17T01:35:13Z
dc.date.issued2020-09-15
dc.identifier.citationHarris, J. K., & Ratcliff, E. L. (2020). Ion diffusion coefficients in poly (3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure. Journal of Materials Chemistry C, 8(38), 13319-13327.en_US
dc.identifier.issn2050-7526
dc.identifier.doi10.1039/d0tc03690k
dc.identifier.urihttp://hdl.handle.net/10150/657798
dc.description.abstractConductive polymers are promising materials as active elements for energy storage and conversion devices due to mixed ion-electron conduction. The ion diffusion coefficient is a relative measure of the efficacy of ion transport, allowing for comparison between materials and electrochemical conditions. In this work, diffusion coefficients of hexafluorophosphate (PF6-) counterions in poly(3-alkylthiophene) (P3AT) materials are measured as a function of both side-chain length and microstructure using electrochemical impedance spectroscopy (EIS). For semi-crystalline films, the diffusion coefficient is found to be anomalous and nearly independent of applied electrochemical potential. The anomalous behavior of diffusion indicates that spin casting yields compact films with an enthalpic barrier to ion transport, attributed to ionic trapping. Diffusion coefficient values similar to 10(-11)cm(2)s(-1)were measured for all films, indicating interchain spacing, in the absence of strong intermolecular interactions with the electrolyte, is not a viable design strategy to control ion transport. For the prototypical system of poly(3-hexylthiophene), we observe almost no potential dependence in ion transport for regioregular and regiorandom films of comparable molecular weight, with both exhibiting anomalous diffusion. Alternatively, changing the microstructure of poly(3-hexylthiophene) to a mostly amorphous, ion-imprinted structure yields similar to 500x increase in the diffusion coefficient to similar to 2 x 10(-8)cm(2)s(-1)at 0.8 Vvs.Ag/Ag(+)with behavior closer to ordinary diffusion. Collectively, these results indicate new insight into ion transport in conductive polymers, where ionic trapping effects can be mitigated through electrodeposition protocols over post-synthesis processing (i.e.spin coating).en_US
dc.description.sponsorshipBasic Energy Sciencesen_US
dc.language.isoenen_US
dc.publisherROYAL SOC CHEMISTRYen_US
dc.rights©The Royal Society of Chemistry 2020.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleIon diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructureen_US
dc.typeArticleen_US
dc.identifier.eissn2050-7534
dc.contributor.departmentUniv Arizona, Dept Chem Engnen_US
dc.contributor.departmentUniv Arizona, Dept Mat Sci & Engnen_US
dc.contributor.departmentUniv Arizona, Dept Chem & Biochemen_US
dc.identifier.journalJOURNAL OF MATERIALS CHEMISTRY Cen_US
dc.description.note12 month embargo; first published online 15 September 2020en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleJournal of Materials Chemistry C
dc.source.volume8
dc.source.issue38
dc.source.beginpage13319
dc.source.endpage13327


Files in this item

Thumbnail
Name:
d0tc03690k.pdf
Size:
3.398Mb
Format:
PDF
Description:
Final Published Version
Thumbnail
Name:
d0tc03690k1.pdf
Size:
1.817Mb
Format:
PDF
Description:
Supplementary Material

This item appears in the following Collection(s)

Show simple item record